relationa|AI

Molham Aref

Reinventing the Database for Al
July 19, 2019

We are a mission-based team

Scientific Impact

Deep computer science and mathematical expertise from several technical communities:

- Database systems and theory
- Machine learning
- Programming languages
- Operations research

2K+ publications
90K+ citations
(35K+ in last 5 years)
37+ award-winning papers (3 this year!)

AI and ML Industrial Impact


```
relational|AI
```


The Case for Relational Artificial Intelligence

A New Technology Category

What if I tell you

> Databases should be Relational

Not Controversial but it used to be

In the Navigational vs Relational DB wars of the 1980's, Navigational DB's were the incumbent and Relational DBs were the underdog!
relational|AI

The Great Debate

Navigational

Charles Bachman

Weighing in with:

- Turing Award for Databases
- Integrated Data Store (IDS)
- Illustrious career at GE and Honeywell

Argument:

- Performance
(it's impossible to implement the relational model efficiently)
- Programmers won't get it (Cobol programmers can't possibly understand relational languages)

Relational

Ted Codd

Weighing in with:

- Researcher at IBM

Argument:

- Separation of the What from the How (Argument for declarativity)
- Domain experts will get it (and they are cheaper and more plentiful than programmers)

1974

Navigational

Charles Bachman

- Turing Award for - Illustrious cata (eree

Ted Codd

Weighing in with:

- Researcher at IBM

Argument:

- Performance
(it's impossible to implement the relational
model efficiently)
- Programmers won't get it
(Cobol programmers can't possibly
understand relational languages)
Relational

Argument

- Separation of the What from the How
(Argument for declarativity)
- Domain experts will get it
(and they are cheaper and more plentiful
than programmers)

○RACLE゚

Oracle (formerly Relational Software, Inc.)

- Launched RDBMS in 1979
- IPO in 1986
- Current Market Cap: \$190.6B

INGRES

Ingres (formerly Relational Technology, Inc.)

- Launched RDBMS in 1981
- IPO'd in 1988 (sold prematurely to ASK in 1989)

RDBMS Popularity

DB-Engines Ranking May 2019

The DB-Engines Ranking ranks database management systems according to their popularity. The ranking is updated monthly.

Relational DBMS

1. Oracle

Relational DBMS
2. MySQL

Relational DBMS
3. Microsoft SQL Server

Relational DBMS
4. PostgresSQL

Analysts agree

Figure 1. Magic Quadrant for Operational Database Management Systems

Why?

What if I tell you

Business Intelligence should be Relational

Not Controversial but it used to be

In the Multidimensional (i.e. Tensor) vs Relational OLAP wars of the 1990's, MOLAP was the incumbent and ROLAP was the underdog!

Tableau Software

- Launched in 2002
- IPO in 2013
- Current Market Cap: \$11.6B

Analysts agree

Why?

What if I tell you

Artificial Intelligence should be Relational

What if I tell you

> No way!!
> Relational systems are too slow!

Tensors and linear algebra are the way we've always done it

I am here to tell you

Relational Artificial Intelligence is Inevitable
relational』

The Need for Speed

"We track about $\mathbf{4 7}$ different hardware startups that all have a unique approach" to accelerating AI.
Greg Brockman, CTO OpenAI, interviewed by Reid Hoffman, May 30, 2019
" 13 private chip companies focused on the AI market have raised more than $\$ 1.2$ billion in venture-capital funding"

- Barron's article "Al Chip Market Will Soar to \$34 Billion in Five Years", Feb 20, 2019
"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude - 100x or greater."

Greg Diamos, Senior Researcher, SVAIL, Baidu, From EE Times - September 27, 2016

Al's biggest challenges are computational!

ACCURACY

Search for better

- Parameters
- Hyper parameters
- Features
- Models

Don't make assumptions that you don't need to make (e.g. i.i.d. assumption)

INTERPRETABILITY

Searching for models that are accurate and interpretable is harder than searching for accurate models

Interpretation in terms of prior knowledge and in language \& ontology that humans understand

VERSATILITY

Reasoning and (generalized) inference: From observations to unknowns in any time period

Inference of any property in the model (e.g., it's just as easy to infer price from sales as it is to infer sales from price)

EXPLAINABILITY

Explainability typically implanted via separate shadow models that have to be learned

Explanation in terms of prior knowledge and in language \& ontology that humans understand

ROBUSTNESS

Many "big data" problems are really a big collection of small data problems

Overcome challenges with small, incomplete, and dirty data problems by incorporating prior knowledge and expertise

SELF-SUPERVISION

"The future will be self-
supervised" Yann LeCun

Build models of the world by observing it and searching model space for the models that have the most explanatory power

FAIRNESS

It's not enough to exclude gender, ethnicity, race, age, etc as features to the models. Other features might be correlated.

Prejudice is a computational limitation: Reasoning about each person vs reasoning about the group

CAUSALITY

Understanding causality beyond A / B testing

Computationally very expensive

The Path to Performance: Brawn

Constant factors - Do same amount of work faster (i.e., brawn)

- Latency hiding: Memory hierarchy and network latencies (e.g., in memory and near-data computing)
- Parallelization: SIMD, multi-core, accelerators (e.g., GPU, TPU, FPGA)
- Specialization: Specialize for workload (e.g., JIT compilation), specialize for data

The Path to Performance: Brains and Brawn

Asymptotics - Do less work (i.e., brains)

- Specialize algorithm by exploiting problem structure
- Algebraic (e.g., groups, semi rings, rings)
- Combinatorial (e.g., fractional hypertree width)
- Statistical (e.g., samples and sketches)
- Geometric (e.g., fast multipole method)
- Solve similar but more tractable problem
- Approximation (with error bars)
relational』

The relational model dominates data management

- The last 40 years have witnessed massive adoption of the relational model
- It's hard to find any examples today of enterprises whose data isn't in a relational database
- Millions of human hours invested in building relational models and populating them with data
- Relational databases are rich with knowledge of the underlying domains that they model
- The availability and accuracy of large amounts of curated data has made it possible for humans (BI) and machines (AI) to learn from the past and to predict the future

What's the first thing we do when we build predictive models?

Feature extraction query		Features					
		ID	x1	x 2	x3	...	y
D							
We work hard to throw away							
all relational structure (and							
semi-structure) we worked so							
hard to build							
We end up throwing away							
important domain							
knowledge							
that can help us build better							
Al models							

The wastefulness does not end there

The wastefulness does not end there

Revisit from first principles

- Avoid materializing the join
- Avoid filling in the zeros
- Avoid one-hot encoding
- Exploit relational structures to speed up learning
o Ideally, train models faster than the time it takes to produce the query output in the first place!

What would a database do?

1. Database

$\square_{\text {s: Sufficient statistics generated from model }}$ spec and feature extraction query. Computed via aggrefations

Features

3. Model specification
(e.g., "degree 2 ridge regression")

Number of Aggregates Varies By Model Class

- Supervised
- Regression

Model	\# features	\# params	\# aggregates
Linear regression	n	$n+1$	$\Theta\left(n^{2}\right)$
Polynomial regression	$\Theta\left(n^{d}\right)$	$\Theta\left(n^{d}\right)$	$\Theta\left(n^{2 d}\right)$
Factorization machines	$\Theta\left(n^{d}\right)$	$\Theta(n r)$	$\Theta\left(n^{2 d}\right)$

n : \# input features d degree r : rank

- Classification

Model	\# features	\# aggregates
Decision trees	$\Theta(n)$	$\Theta(n b h)$

b : branching factor, h : depth (data-dependent)

■ Unsupervised

Model	\# aggregates
K-means	$\Theta(k n)$
PCA	$\Theta\left(k n^{2}\right)$

k : \# clusters

We Efficiently Compute Those Aggregates

Case Study: Retail dataset

Case Study: Retail dataset

Relation	Cardinality (\# Tuples)	Degree (\# k/v columns)	File size (csv)
Inventory	84,055,817	3 \& 1	2 GB
Items	5,618	1 \& 4	129 KB
Stores	1,317	1 \& 14	139 KB
Demographics	1,302	1 \& 15	161 KB
Weather	1,159,457	2 \& 6	33 MB
Total:			2.1 GB

Case Study: Retail dataset - PostgreSQL \& TensorFlow

- The design matrix is constructed by joining together all the relations
- Train a linear regression model to predict sales by item, store, date from all the other features

Cardinality (\# of tuples)	$84,055,817$
Degree (\# of columns)	$44(3 \& 41)$
Size	23 GB
Time to compute in PostgreSQL	217 secs
Time to export from PostgreSQL	373 secs
Time to learn parameters with GD	$>12,000$ secs

Case Study: Retail dataset - comparison

	Design matrix with PostgreSQL/TensorFlow		relationalAI	
	Time	Size	Time	Size
Original	--	2.1 GB	--	2.1 GB
Join Tables	217 secs	23 GB	--	--
Export DM	373 secs	23 GB	--	--
Aggregate	--	--	18 secs	37 KB
Parameter learning with GD	> 12 K secs	--	0.5 secs	--
Total	> 12.5 K secs		18.5 secs	
Improvement (13t ${ }^{\text {stadel }}$	> 676x faster		11x smaller	
Every model after	> 24,000x faster			

Does it work for all model classes or methods?

Supported methods include

- Linear regression
- Polynomial regression
- Factorization machines
- Decision trees
- Linear SVM
- Deep sum-product networks
- Naive Bayes Classifier (discrete case)
- Hidden Markov Model (discrete case)
- K-Means \& K-Median clustering
- Gaussian Discriminant Analysis
- Linear Discriminant Analysis
- Principal component analysis
- Frequent item set mining (with Apriori algorithm)
- Computing empirical mutual information and entropy

So what?

Some context:

So what?

What are the implications of 2-3 orders of magnitude speed-up?

Algorithms that exploit the domain structure give us a 12-15 YEAR ADVANTAGE

Al's biggest challenges are computational!

ACCURACY

Search for better

- Parameters
- Hyper parameters
- Features
- Models

Don't make assumptions that you don't need to make (e.g. i.i.d. assumption)

INTERPRETABILITY

Searching for models that are accurate and interpretable is harder than searching for accurate models

Interpretation in terms of prior knowledge and in language \& ontology that humans understand

VERSATILITY

Reasoning and (generalized) inference: From observations to unknowns in any time period

Inference of any property in the model (e.g., it's just as easy to infer price from sales as it is to infer sales from price)

EXPLAINABILITY

Explainability typically implanted via separate shadow models that have to be learned

Explanation in terms of prior knowledge and in language \& ontology that humans understand

ROBUSTNESS

Many "big data" problems are really a big collection of small data problems

Overcome challenges with small, incomplete, and dirty data problems by incorporating prior knowledge and expertise

SELF-SUPERVISION

"The future will be self-
supervised" Yann LeCun

Build models of the world by observing it and searching model space for the models that have the most explanatory power

FAIRNESS

It's not enough to exclude gender, ethnicity, race, age, etc as features to the models. Other features might be correlated.

Prejudice is a computational limitation: Reasoning about each person vs reasoning about the group

CAUSALITY

Understanding causality beyond A / B testing

Computationally very expensive

> relational』

Statistical Relational Learning

Relational generative models

What else do we throw away when we build the feature matrix?

	Features					
Feature extraction query	ID	x 1	x2	x3	...	y
D						
Translation to feature matrix						
assumes each entity is						
independent of the others (iid assumption)						
This is often not true - e.g.						
related sku's or related people						

What if we don't make the i.i.d assumption?

Features

What if we don't make the i.i.d assumption?

Features

	ID	x1	x2	x3	\cdots	y	ID	$\times 1$	x2	x3	...	y	ID	$\times 1$	x2	x3	\ldots	y
$\overline{\text { ¢ }}$																		

Statistical Relational Learning

■ Statistical Relational models generalize PGMs in the same way that first order logic generalizes propositional logic

- they allow us to quantify over individuals/entities
- Allows for generalization (e.g. item, sub-class, class, dept, etc.)
- Ability to predict link-based patterns (e.g. inter item dependencies at sub-class, class, dept etc.)
- Models a varied number of observations for each object/relation. (e.g. friends, colleagues, etc.)
- Variants
- MLN in various flavors, PSL, RDN, BoostSRL, ProbLog, etc.

Statistical Relational Learning

■ Inference

- Unlike "traditional" methods where prediction is the input applied to the parameters of the model class, inference in SRL requires expensive optimization or (approximate) integration over possible worlds

■ Learning

- Unlike traditional learning algorithms, just one instance to learn from (the relational DB)
- Structure learning uses inference during each step

Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close friends and family members. As more people quit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network.

[^0]
CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

```
person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)
```


CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

```
person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)
```


Smoking causes cancer Friends have similar smoking habits

CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

```
person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)
```


Smoking causes cancer
 Friends have similar smoking habits

```
w1 smokes(x) -> cancer(x)
```

w2 smokes(x), friends(x, y) -> smokes(y)

How do you make this tractable?

Approximate answer by converting into convex continuous optimization problem

Exploit group symmetry \rightarrow lifted inference and approximate lifted inference

Avoid grounding altogether \rightarrow in-database learning

Leveraging database semantics to avoid having to cluster -> in-database SPNs

Stay tuned
relational』I

The Path to Performance: Brawn

Constant factors - Do same amount of work faster (i.e., brawn)

- Latency hiding: Memory hierarchy and network latencies (e.g., in memory and near-data computing)
- Parallelization: SIMD, multi-core, accelerators (e.g., GPU, TPU, FPGA)
- Specialization: Specialize for workload (e.g., JIT compilation), specialize for data

Motivation for implementation strategy

3 to 5 years building something similar in prior lives using $C++$ without ability to specialize for queries or data sets

Julia in a nutshell

"Looks like Python, feels like LISP, runs like C"
Julia is fast, dynamic, optionally typed, and multi-dispatched

- Feels like Lisp: Hygienic macros, code quoting, generated functions
- Runs like C: Specialization based on type inference, inlining, unboxing, LLVM to gen assembly

Brains and Brawn: Systems Programming in Julia

- **Specialization**
- Query evaluation: Just-in-time compiled query plans
- Specialization
- Data types: e.g., fixed-precision decimals

Just-in-Time Query Compilation

- Query compilation has only recently replaced interpretation in modern database systems

select A, B, C		
from R, S, T		
where..		pushq movq group by...
testq	\%rsp, \%rbp	
\%rdi,		

- But, state of the practice is surprisingly primitive
- Typically: variations on template expansion in C/C++
- Ad-hoc methods to generate code: e.g., write a text file and invoke gcc
- Cumbersome engineering effort
- Better: use a language with proper staged metaprogramming support
- e.g., LegoDB using Scala/LMS/Squid
- Julia is very appealing from this point of view!

Simplified TPC-H Q1: from SQL to Julia to Native Code

```
select
    sum(l_extprice * (100 - l_discount) * (100 + l_tax))
from
    lineitem
```

From SQL to Julia with runtime code generation

```
sum = 0
for i in 1:size
    sum += l_extprice[i] * (100 - l_discount[i]) * (100 + l_tax[i])
end
return sum
```

From Julia to LLVM to
optimized x86-64 *
${ }^{(*)}$ The loop actually even gets vectorized, but we produced simpler code here for presentation purposes


```
    testq %rcx, %rcx
    jle L71
    movq (%rdi), %r8
    movq (%rsi), %r9
    movq (%rdx), %r10
    xorl %edi, %edi
    xorl %eax, %eax
L32:
    movl $100, %esi
    subq (%r9,%rdi,8), %rsi
    movq (%r10,%rdi,8), %rdx
    addq $100, %rdx
    imulq (%r8,%rdi,8), %rsi
    imulq %rdx, %rsi
    addq %rsi, %rax
    addq $1, %rdi
    cmpq %rdi, %rcx
    jne L32
    retq
L71:
    xorl %eax, %eax
    retq
```

BI benchmark: vs Tableau/Hyper and Databricks Spark

Brains and Brawn Together: 3-Clique Graph benchmark vs Databricks Spark

Triangle Count on graph500 dataset

Brains and Brawn: Systems Programming in Julia

- Specialization
- Query evaluation: Just-in-time compiled query plans
- **Specialization**
- Data types: e.g., fixed-precision decimals

Abstraction without regret by example: Fixed-precision decimals

Fixed-precision decimals are an important data type in database systems (e.g., for currencies), and avoid the inexact representation problems of floats:

```
julia> 0.3333 + 0.33333
0.6666300000000001 # oops
```

The Julia ecosystem has a FixedPointDecimal package for this purpose

```
julia> T = FixedDecimal Int64,5}
FixedDecimal{Int64,5}
julia> T(0.3333) + T(0.33333)
FixedDecimal{Int64,5}(0.66663) # much better!
```

But... is this really going to be efficient enough? (Most database systems need special code to "compile away" fixed precision decimal operations into simple operations on integers...)

Here's the FixedDecimal datatype and its addition operation...

```
struct FixedDecimal T <: Integer, f} <: Real
    i::T
    function Base.reinterpret(::Type{FixedDecimal{T, f}}, i::Integer) where {T, f
        n = max_exp10(T)
        if f >= 0 && (n < 0 || f<= n)
            new T, f}(i % T)
        else
            _throw_storage_error(f, T, n)
        end
    end
end
+(\mathbf{x::FixedDecimal{T, f}, y::FixedDecimal{T, f}) where {T, f} =}
    reinterpret(FD T, f}, x.i+y.i)
... and lo, the Julia compiler produces a tiny \# of ops on integers, just as required!
```

```
julia> @code_native +(T(0.3333),T(0.33333))
```

decl \%eax
movl (\%esi), \%eax
decl \%eax
addl (\%edi), \%eax
retl

Moreover, this will be inlined at the call site in any practical example!

What about Parallelization and Accelerators?

Manual » Parallel Computing

QEdit on GitHub

Parallel Computing

For newcomers to multi-threading and parallel computing it can be useful to first appreciate the different levels of parallelism offered by Julia. We can divide them in three main categories:

1. Julia Coroutines (Green Threading)
2. Multi-Threading
3. Multi-Core or Distributed Processing

We will first consider Julia Tasks (aka Coroutines) and other modules that rely on the Julia untime library, that allow us to suspend and resume computations with full control o inter-Tasks communication without having to manually interface with the operating system's scheduler. Julia also supports communication between Tasks through operations ke wait and fetch. Communication and data synchronization is managed through Channels, which are the conduits that provide inter-Tasks communication.

Julia also supports experimental multi-threading, where execution is forked and an anonymous function is run across all threads. Known as the fork-join approach, parallel threads execute independently, and must ultimately be joined in Julia's main thread to allow serial execution to continue. Multi-threading is supported using the Base. Threads nodule that is still considered experimental, as Julia is not yet fully thread-safe. In particular segfaults seem to occur during $\ \backslash O$ operations and task switching. As an up-todate reference, keep an eye on the issue tracker. Multi-Threading should only be used if you take into consideration global variables, locks and atomics, all of which are explaine later.

In the end we will present Julia's approach to distributed and parallel computing. With scientific computing in mind, Julia natively implements interfaces to distribute a process across multiple cores or machines. Also we will mention useful external packages for distributed programming like MPI.jl and DistributedArrays.jl.

High-level GPU programming in Julia

Tim Besard	Pieter Verstraete	Bjorn De Sutter
Computer Systems Lab Ghent University, Belgium	Ghent Univerity, Belgium	Computer Systems Lab Ghent University, Belgium
Tim.Besardeelis. ugent. be		Bjorn DeSutterceis is ugent be

bstract

GPUs are popular devices for accelerating scientific calcula ons. Howeerer, as GPU coded is usually writen in low-lever popular with scientific programmers. To overcome this, we
present a framework for CuDA GPU pregramming in hre sent a framework for CUDA GPU programming in ul
 of the necessary low-tevel interactions using modern
generation techniuucs to avoid run -ime overchead Eevauaing the f ramework zund its APIs on a a case comprising the trace transfom from the ficld of imanace pro
cessing. we find that the impact on performance is min cessing. We ind tian he impact on performance is minh netaprogramming capabilitits of the Julia language prove
nvaluable for enabling this. Our framework signifeanly in roves usabiliy of ofpus, makning them aceesside fora wide tange of programmers. It is avalable as free
software licensed under the MIT License.

Keywords Julia, GPU, CUDA, LLVM, Metaprogramming

1. Introduction

GPUs can signifcanty speed up certain worklods Hower largeting GPUs requires serious effort. Specialized machin code neds to be generated through the use of a vendo ing execution on the coprocessor is often quitc complex eli. Even though hhe vendors try hard to supply toolcha

automatic full Compilation of Julia Programs and ml models o Cloud TPUs

Keno Fischer ' Elliot Saba ${ }^{\prime}$
Abstract
Googles's Cloud TPUs are a promising new hardware architecture for machine learning workloads. They have
 se by non Tensorflow frontends. We describe a method and implementation for offloading suitable sections

 implementation is less than
any other Julia packages.

1 introduction

Onc of the fundanental changes that has e enabled de
 pule power to train and oppimize machine leaning mode the compute power available in recent years was able to deliver sufficiently good resuls to be interesting for real
world problems. A significant chunk of this compute power
 whose vector computc cappibilit, while orig inally intend
for graphics have shown to deliver very good performan on the kind of matixixthary percations generally performed in machine learning model.
The real world success of these approaches and of GPUs
in this spacc in particular has set off a furry of activity

 genereraly des not extend to new, non. GPU accelerators and
developing software for theses system remains a challenge. In 2017, Google announced hat they would make cheir proIn 2017, Google announced hart hey would make therin porn
prictary Yensor Processing Unit (TPU) machinc leaning Tulia Computing, Inc.. Correspondence to: Keno Fischice Pun
acclerator avilable to the public via their cloud offering.

 a good foundation for targeting TPUs by non Tensorfte
uscr as well as for non-machince lcanning workload In this In this paper, we present initial wort to compilie generan
Julia coded otr
cousing this interface. This approach is in contrast to the approach taken by T Tenorffiow Aproadedi is al
2016) which docs not compile Python code proper bu 2016 , which docs not compile Python code proper bir
rather uses Python to build a computational graph, whic

 of the Julia programaming lagnauge in witing theressirenced
This inclucs This includes higher-level fatuturs such as multitile dispatt
higher order functions and existing libraics such as tho

relational』I

Al's biggest opportunities are relational!

ACCURACY

Search for better

- Parameters
- Hyper parameters
- Features
- Models

Don't make assumptions that you don't need to make (e.g. i.i.d. assumption)

INTERPRETABILITY

Searching for models that are accurate and interpretable is harder than searching for accurate models

Interpretation in terms of prior knowledge and in language \& ontology that humans understand

VERSATILITY

Reasoning and (generalized) inference: From observations to unknowns in any time period

Inference of any property in the model (e.g., it's just as easy to infer price from sales as it is to infer sales from price)

EXPLAINABILITY

Explainability typically implanted via separate shadow models that have to be learned

Explanation in terms of prior knowledge and in language \& ontology that humans understand

ROBUSTNESS

Many "big data" problems are really a big collection of small data problems

Overcome challenges with small, incomplete, and dirty data problems by incorporating prior knowledge and expertise

SELF-SUPERVISION

"The future will be self-
supervised" Yann LeCun

Build models of the world by observing it and searching model space for the models that have the most explanatory power

CAUSALITY

Understanding causality beyond A / B testing

Computationally very expensive

Prejudice is a computational limitation: Reasoning about each person vs reasoning about the group

Why hasn't this happened yet?

Al investment is focused on consumer AI

- Deep learning for images, speech, text \rightarrow not relational data (yet)

Weaknesses of implementations of relational data management systems

- Abstraction leads to regret
- Can guarantee correct answer but can't guarantee optimal path to get there
- Limitations on expressiveness, i.e. I can't always ask the question I want to ask

Inertia - we have something that (sort of) works and we're getting by. "you can't expect us to rewrite all this code and retrain all those data scientists and programmers"

- The number of models that haven't been built is >>> the number of models that have
- The number of future modelers is >>> the number of current modelers
- The number of domain experts is \ggg the number of modelers and data scientists

Why Now?

- We invented a new generation of (meta) algorithms that provide optimal solutions to large problem classes
- OOM more power for OOM better intelligence
- New generation of compilers that eliminate the cost of abstraction
- Allow us to specialize for workload
- Allow us to specialize for datasets

■ Backlash against Hadoop (Map-Reduce), NoSQL, ML Frameworks - "the emperor has no clothes" is in the air

- Require you to sell your soul for scalability and/or performance
- Harder to program and operate

What are we doing about it?

We built a system that gives you abstraction without regret

How are we going to do that?

- Constant factors
- Asymptotic factors

We're going to meet people where they are:

- Tables and SQL if you are an analyst
- Tensors \& Linear Algebra if you are a data scientist

We're going to simplify and consolidate analytics:

- The building blocks for next gen AI (e.g. fast aggregation, factoring, multi-way evaluation, JIT, accelerators) building blocks for all enterprise analytics: BI, graphs, rules, planning, mathematical optimization.

We're going to stage it. We're going to consolidate and checkpoint our gains as we go.

- AutoML (with automatic feature engineering and relational statistics) -> Data scientist
- Data Management Systems for Analytics (aka data lakes) -> Data scientist
- Business Intelligence \& Data Warehouses -> Analyst \& End User

Product: Never have to start from scratch again

relational』I

Underlying magic: Worst-case optimal join algorithms

- Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems. Ngo. (Gems of PODS 2018)
- Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems. Ngo, Porat, Re, Rudra. (Journal of the ACM 2018)
- What do Shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another? Abo Khamis, Ngo, Suciu, (PODS 2017 - Invited to Journal of ACM)
- Computing Join Queries with Functional Dependencies. Abo Khamis, Ngo, Suciu. (PODS 2017)
- Joins via Geometric Resolutions: Worst-case and Beyond. Abo Khamis, Ngo, Re, Rudra. (PODS 2015, Invited to TODS 2015)
- Beyond Worst-Case Analysis for Joins with Minesweeper. Abo Khamis, Ngo, Re, Rudra. (PODS 2014)
- Leapfrog Triejoin: A Simple Worst-Case Optimal Join Algorithm. Veldhuizen (ICDT 2014 - Best Newcomer)
- Skew Strikes Back: New Developments in the Theory of Join Algorithms. Ngo, Re, Rudra. (Invited to SIGMOD Record 2013)
- Worst Case Optimal Join Algorithms. Ngo, Porat, Re, Rudra. (PODS 2012 - Best Paper)

Underlying magic: Optimal query plans for worst-case optimal joins

- Juggling functions inside a database, Abo Khamis, Ngo, Suciu (Invited to SIGMOD Record)
- On Functional Aggregate Queries with Additive Inequalities. Abo Khamis, Curtin, Moseley, Ngo, Nguyen, Olteanu, Schleich. PODS 2019
- What do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog have to do with one another? Abo Khamis, Ngo, Suciu, (PODS 2017 - Invited to Journal of ACM)
- FAQ: Questions Asked Frequently, Abu Khamis, Ngo, Rudra, (PODS 2016 - Best Paper, Invited to Journal of ACM)

Underlying magic: In-database relational learning

- Rk-means: Fast Clustering for Relational Data. Curtin, Moseley, Ngo, Nguyen, Olteanu, Schleich. Submitted to NeurIPS 2019
- On coresets for logistic regression. Curtin, Moseley, Pruhs, Samadian. Submitted to NeurIPS 2019
- SolverBlox: Algebraic Modeling in Datalog. Borraz-Sanchez, Klabjan, Pasalic, Aref. (Declarative Logic Programming - Morgan \& Claypool 2018)
- In-Database Learning with Sparse Tensors, Abo Khamis, Ngo, Nguyen, Olteanu, Schleich (PODS 2018 - Invited to Journal of TODS)
- AC/DC: In-Database Learning Thunderstruck, Abo Khamis, Ngo, Nguyen, Olteanu, Schleich (DEEM 2018)
- Modelling Machine Learning Algorithms on Relational Data with Datalog. Makrynioti, Vasiloglou, Pasalic, Vassalos. (DEEM 2018)
- In-Database Factorized Learning, Ngo, Nguyen, Olteanu, Schleich (AMW 2017)
- Data Science with Linear Programming. Makrynioti, Vasiloglou, Pasalic, Vassalos. (DeLBP 2017)

Underlying magic: Julia

- Julia: Dynamism and Performance Reconciled by Design, Jeff Bezanson, Jiahao Chen, Ben Chung, Stefan Karpinski, Viral B. Shah, Lionel Zoubritzky, Jan Vitek (OOPSLA 2018)
- Julia Subtyping: A Rational Reconstruction, Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson, Jan Vitek (OOPSLA 2018)
- Julia: A fresh approach to numerical computing, Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral B. Shah (SIAM Review 2017)

Julia: A Fresh Approach to
Numerical Computing*

Julia: Dynamism and Performance Reconciled by Design

JEFF BEZANSON, Julia Comp
JIAHAO CHEN, Capital One
BEN CHUNG Noothestern
STEFAN KARPINSKI, Julia Cor
VIRAL B. SHAH, Julia Computiu LIONEL ZOUBRITZKY, École JAN VITEK, Northeastern Univer Julia is aprogramming language for
such as Pyython or MATLAB with such as Python or MATLAB, with
Julia's productivity fatures indlude Juina s proauctivity reatures incuded
and multiple dippath At the same
specializing justint specializing just in -ime compiler to
desien cho design choices
and usability.
CCS Concepts. Soffware and its ${ }_{\text {Fust-int-time co compilerss Multiparadi }}$ Additional Key Words and Phrases. ACM Reference Format: Jeff Bezanson, Jiahao Chen, Ben Chu
Julia: Dynamism and Performance (2018), 23 pages. htpps://doiorgs 00.

1 introduction Scientific programming has tra
productivity languages (Python, $\mathrm{C}++$, Fortran) for speed and a prt
such as dynamic typing or garba Thus, scientific applications ofter problem size and complexity ou tum to performance languages.
existing application (or some sub exising application (or some sus to be emulated by hand. As a re often a daunting task.
Scientists have been One example is the ROOT do petabytes of data, the high ener extension to $\mathrm{C}++$, providing inte Pemmision to make digitit or hard opp
provided that copies re not made or dii provided dhat copies are not made or diin
the full citation on the first page Copyn contact the owner auntor(s).
02018 Coprieght held by bhe

Proceedings of the ACM on

Julia Subtyping: A Rational Reconstruction

FRANCESCO ZAPPA NARDELLI, Inria and Northeastern U.
JULIA BELYAKOVA, Czech Technical U in Prague
ARTEM PELENTSYN, Czech Technical U. in Prague
JEFF BEZANSON, Julia Computing
JAN VITEK, Northeastem U. and Czech Technical U. in Praguc
Programming languages that support multiple dispatch rely on an expressive notion of subtyping to specify
method applicability In these languages. type annotations on method declarations are used to sel nethod applicabiity. In these languages, type annotations on method declarations are used to select, out of a
 papcr providss the frist formal dcfinition of Julia's subtypc rclation and motivatss it dssign. Wc validatc our
specification empirically with an implementation of our definition that we compare against the existing Julia specifcation empirically with an implementation of our definition that we compare against the existing Julia
implementation on a collection of real-world programs. Our subtype implementation differs on 122 subtype implementation on a colection of rea.-world programs. Our subype implementation differs on 122 subtype
tests out of 6,014477 . The first 120 differences are due to a bug in J Juia that was fixed once reported, the remaining 2 are under discussion

I introduction

Multiple dispatch is used in languages such as CLos [DeMichiel and Gabriel 1987], Perl [Randal et al. 2003], R [Chambers 2014], Fortress [Allen et al. 2011], and Julia [Bezanson 2015]. It allows programmers to overload a generic function with multiple methods that implement the function for different type signaturess invocation of the function is resolved at run-time depending on the
actual types of the arguments. The expresstua e power of mulinle dispath stems frem
 me way it constrains the applicability of a
method to a particular set of values. With it,
programmers
programmers can write code that is concise mul_int (x, y)
and clear, as specih cases, such as optimized versions of matrix multiplication, can be relegated
to dedicated methods. The inset shows three of the 181 methoe Julia's standard library. The first method implements the case where range is multiplition in number. The second method is invoked on generic numbers: it explicitly converts the arguments to a common type via the promote function. The last method invokes native multiplication; its signature has a type variable τ that can be instantiated to any integer type.
For programers
For programmers, understanding multiple dispatch requires reasoning about the subtype relation,
Consider the infix call $3 * x$. If x is bound to a float, only the second method is applicable. If instead, x is an integer, then two methods are applicable and Julia's runtime must identify the most specifc one. Now, consider $3 * 4$, with argument type Tuple (Int, Int). The signature of the first method is Tuple e(Number, Range\}. Tuples are covariant, so the runtime checks that Int <: Number
and Int <: Range. Integers are subtypes of numbers, but not of ranges, so the first method is not and Int <: Range. Integers are subtypes of numbers, but not of ranges, so the first method is not
applicable, but the second is, as Tuple (Int, Int) <: Tuple(Number, Number). The third method is also applicable, as Tuple (Int, Int \} is a subtype of Tuple (T, T) There \mathbb{T} : Union (Si Sined, Unsigned); because there exists an instance of the variable T (namely Int for which subtyping holds. As
multiple methods are applicable, subtypig is used to compare their signatures it holds that multiple methods are applicable, subtyping is used to compare their signatures; it holds that
Tuple (T, T\} where T<: Union \{Signed, Unsi ined\} is a subtype of Tuple(Number, Number\} because this Tolds for all instances of the variable T. The call will be dispatched, as expected, to the third method.

relationa|AI

THANK YOU

[^0]: Slide and example thanks to Pedro Domingos

