# A Layered Aggregate Engine for Analytics Workloads

fdbresearch.github.io

relational.ai





## Maximilian Schleich

University of Oxford

Dan Olteanu, University of Oxford
Mahmoud Abo Khamis, relationalAl
Hung Q. Ngo, relationalAl
XuanLong Nguyen, University of Michigan

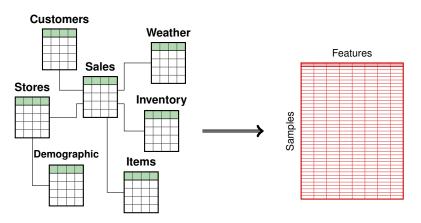


University of Washington

July, 2019

## Recall relational Al Keynote: Analytics over Databases

## Current State of Affairs in Analytics Workloads



- Carefully crafted by domain experts
- Comes with relational structure

- Throws away relational structure
- Can be order-of-magnitude larger

## Turn Analytics Workload into Database Workload!

Database Workload: Batches of Aggregate Queries

#### Advantages:

- 1. Use DB Tools for Optimization
- 2. Decompose Aggregates into Views over Join Tree
  - Pushing aggregate computation past joins
  - Using different roots and directional views
- 3. Avoid Materialization of Data Matrix

#### Challenge:

■ Workloads require many aggregate queries

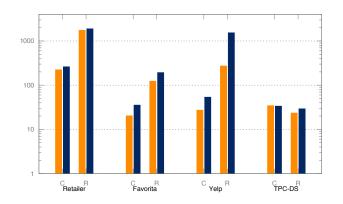
## Aggregates are at the Core of Analytics Workloads

| Workload                               | Query Batch                                   | # Queries |
|----------------------------------------|-----------------------------------------------|-----------|
| Linear Regression<br>Covariance Matrix | $SUM(X_i * X_j)$<br>$SUM(X_i)$ GROUP BY $X_j$ | 140       |
|                                        | COUNT(*) GROUP BY $X_i, X_j$                  |           |
| Regression Tree<br>(1 Node)            | VARIANCE( $Y$ ) WHERE $X_j = c_j$             | 270       |
| Mutual Information                     | COUNT(*) GROUP BY X;                          | 106       |
| Chow-Liu Trees                         | COUNT(*) GROUP BY $X_i, X_j$                  |           |
| Data Cubes                             | $\mathtt{SUM}(M)$ GROUP BY $X_1,\ldots,X_d$   | 40        |

(# Queries shown for Favorita Kaggle dataset)

## Existing DBMSs are **NOT** Designed for Query Batches

#### Relative Speedup for Our Approach over DBX and MonetDB



C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

## Tools of a Database Researcher

#### 1. Exploit structure in the data

- Algebraic structure: Factorized aggregate computation
- Combinatorial structure: Query complexity measures

#### 2. Sharing computation and data access

- Aggregates decomposed into views over join tree
- Share data access across views

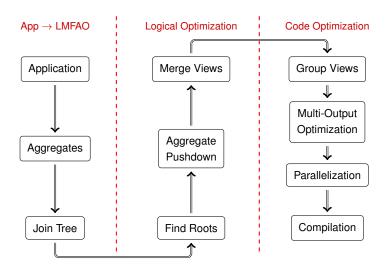
#### 3. Specialization for workload and data

- Generate code specific to the query batch and dataset
- Improve cache locality for hot data

#### 4. Parallelization

Task and domain parallelism

## LMFAO: Layered Multi Functional Aggregate Optimization

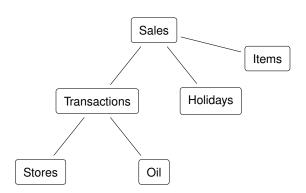


## The Layers of LMFAO: Logical Optimization

```
Q_1: SUM (units)
```

 $Q_2$ : SUM (item · f(date, color)) GROUP BY store

Q3: SUM (units · item) GROUP BY color



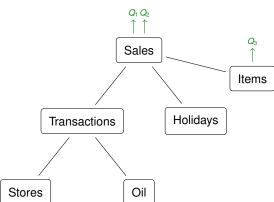
### Favorita Kaggle Dataset:

Units sold for different items, stores, date.



# The Layers of LMFAO: Logical Optimization

 $\begin{array}{ll} Q_1 \colon \mathtt{SUM} \ (\mathtt{units}) \\ Q_2 \colon \mathtt{SUM} \ (\mathtt{item} \cdot f (\mathtt{date}, \mathtt{color})) & \mathsf{GROUP} \ \mathsf{BY} \ \mathtt{store} \\ Q_3 \colon \mathtt{SUM} \ (\mathtt{units} \cdot \mathtt{item}) & \mathsf{GROUP} \ \mathsf{BY} \ \mathtt{color} \end{array}$ 



#### **Find Roots Layer:**

For each query, decide its output (root) node. Choose root which minimizes sizes of views.

Application Aggregates Join Tree Find Roots Aggregate Pushdown Merge Views Group Views Multi-Output Optimization Parallelization

Compilation

# The Layers of LMFAO: Logical Optimization

```
Q_1: SUM (units)
Q_2: SUM (item · f(date, color)) GROUP BY store
Q_3: SUM (units · item)
                                  GROUP BY color
                                         Q_1 Q_2
                                                   VI+S VI+S
                                       Sales
                                                    V_{S \rightarrow I}
                                                                 Items
                                                   Holidays
                       Transactions
```

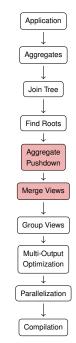
#### **Aggregate Pushdown Layer:**

Stores

Break down each query into directional views over the join tree.

Reuse Partial Aggregates & Merge Views with same group-by attributes.

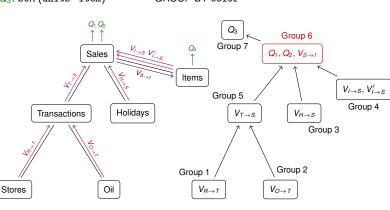
Oil



 $Q_1$ : SUM (units)

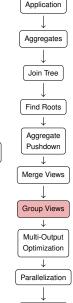
 $Q_2$ : SUM (item · f(date, color)) GROUP BY store

 $Q_3$ : SUM (units · item) GROUP BY color



#### **Group Views Layer:**

- 1. Construct Dependency Graph
- 2. Group Views that are computed over same relation

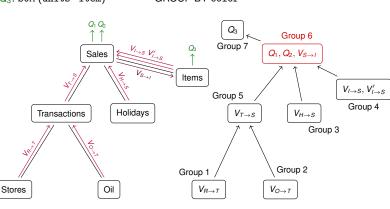


Compilation

 $Q_1$ : SUM (units)

 $Q_2$ : SUM (item · f(date, color)) GROUP BY store

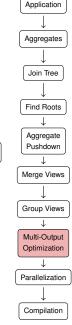
 $Q_3$ : SUM (units · item) GROUP BY color



## **Multi-Output Optimization Layer:**

View Group is a computational unit in LMFAO.

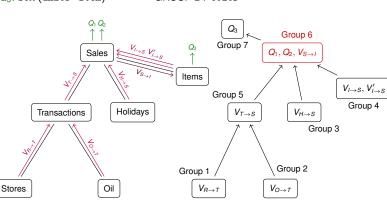
All views in one group are computed in one scan over the relation.



 $Q_1$ : SUM (units)

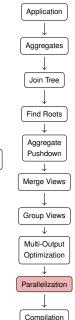
 $Q_2$ : SUM (item · f(date, color)) GROUP BY store

 $Q_3$ : SUM (units · item) GROUP BY color



## Parallelization Layer:

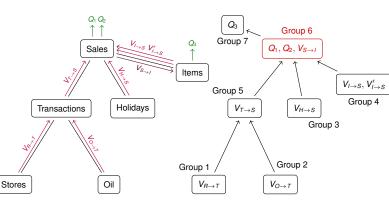
Task parallelism: Evaluate independent groups in parallel Domain parallelism: Partition the large relation used by each group



 $Q_1$ : SUM (units)

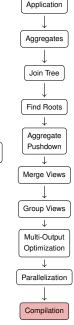
 $Q_2$ : SUM (item · f(date, color)) GROUP BY store

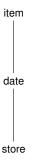
 $Q_3$ : SUM (units · item) GROUP BY color



#### **Compilation Layer:**

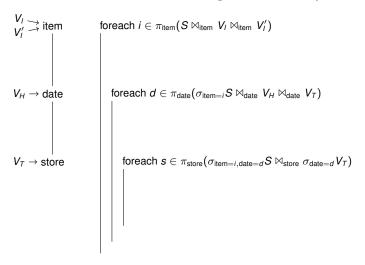
Generate C++ code to compute each View Group.





Q<sub>1</sub>: SUM (units)

Traverse Sales as a trie following an order of its join attributes



Q<sub>1</sub>: SUM (units)

Lookup into incoming views, e.g.,  $V_H$ , as early as possible

```
\alpha_0 = 0:
for each i \in \pi_{\text{item}}(S \bowtie_{\text{item}} V_i \bowtie_{\text{item}} V'_i)
    \alpha_3 = 0:
    for each d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_H \bowtie_{\text{date}} V_T)
       \alpha_4 = V_H(d);
          \alpha_6 = 0;
       for each s \in \pi_{\text{store}}(\sigma_{\text{item}=i,\text{date}=d}S \bowtie_{\text{store}} \sigma_{\text{date}=d}V_T)
          \alpha_8 = V_T(d,s); \quad \alpha_9 = 0;
         for each u \in \pi_{\text{units}} \sigma_{\text{item}=i,\text{date}=d,\text{store}=s} S : \alpha_9 += u;
           \alpha_6 += \alpha_8 \cdot \alpha_9;
```

 $Q_1$ : SUM (units)

Insert code for partial aggregates as early as possible Reduces number of executed instructions

```
\begin{array}{c|c} V_I \Longrightarrow \text{item} & \alpha_0 = 0; \\ V_I' \Longrightarrow \text{item} & I & \alpha_1 = V_I(i) \\ & \alpha_2 = i; \\ & \alpha_3 = 0; \\ & V_H \to \text{date} & \text{foreach } d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_H) \end{array}
                                                    for each d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_H \bowtie_{\text{date}} V_T)
                                                             \alpha_4 = V_H(d);
                                                                 \alpha_6=0;
                                                            for each s \in \pi_{\text{store}}(\sigma_{\text{item}=i,\text{date}=d}S \bowtie_{\text{store}} \sigma_{\text{date}=d}V_T)
                                                                   \alpha_8 = V_T(d,s); \quad \alpha_9 = 0;
                                                             for each u \in \pi_{\mathsf{units}} \sigma_{\mathsf{item} = i, \mathsf{date} = d, \mathsf{store} = s} S : \alpha_9 += u;
                                                                   \alpha_6 += \alpha_8 \cdot \alpha_9;
                                                          \begin{array}{c} \alpha_3 \mathrel{+}= \alpha_4 \cdot \alpha_6; \\ \alpha_0 \mathrel{+}= \alpha_1 \cdot \alpha_3 \quad V_{S \to I}(i) = \alpha_3 \cdot \alpha_2; \end{array}
```

 $V_{S \rightarrow I}$ : SUM (units · item) GROUP BY item

Different outputs share partial aggregates

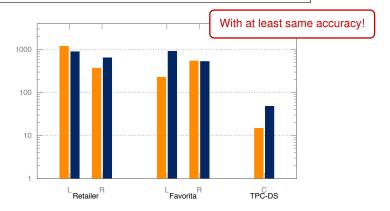
```
\alpha_0 = 0:
                                         for each i \in \pi_{\text{item}}(S \bowtie_{\text{item}} V_i \bowtie_{\text{item}} V'_i)
V_H \rightarrow \text{date}
                                              for each d \in \pi_{\text{date}}(\sigma_{\text{item}=i}S \bowtie_{\text{date}} V_H \bowtie_{\text{date}} V_T)
                                                    \alpha_4 = V_H(d); \quad \alpha_5 = 0;
                                                    for each c \in \pi_{\text{color}} \sigma_{\text{item}=i} V'_i: \alpha_5 += f(d,c) \cdot V'_i(i,c);
                                                    \alpha_6 = 0; \alpha_7 = \alpha_5 \cdot \alpha_2 \cdot \alpha_4;
                                                  for each s \in \pi_{\text{store}}(\sigma_{\text{item}=i, \text{date}=d}S \bowtie_{\text{store}} \sigma_{\text{date}=d}V_T)
V_{\tau} \rightarrow \text{store}
                                                    \alpha_8 = V_T(d,s); \quad \alpha_9 = 0; \quad \alpha_{10} = |\sigma_{\text{item}=i,\text{date}=d,\text{store}=s}S|;
                                                    for each u \in \pi_{\text{units}} \sigma_{\text{item}=i,\text{date}=d,\text{store}=s} S : \alpha_9 += u;
                                                    \alpha_6 += \alpha_8 \cdot \alpha_9; \quad \alpha_{11} = \alpha_7 \cdot \alpha_8 \cdot \alpha_{10};
                                                    if Q_2(s) then Q_2(s) += \alpha_{11} else Q_2(s) = \alpha_{11};
                                              \begin{array}{c} \alpha_3 \mathrel{+}= \alpha_4 \cdot \alpha_6; \\ \alpha_0 \mathrel{+}= \alpha_1 \cdot \alpha_3 \quad V_{S \to I}(i) = \alpha_3 \cdot \alpha_2; \end{array}
```

 $Q_2$ : SUM (item · f(date, color)) GROUP BY store

Different outputs share partial aggregates

## **Experimental Evaluation**

Relative Speedup for LMFAO over TensorFlow and MADlib



 $L = Linear \ Regression; \quad R = Regression \ Tree; \quad C = Classification \ Tree;$   $TensorFlow \ learns \ only \ 1 \ Decision \ Tree \ Node. \quad Intel \ i7-4770 \ (8 \ CPUs, 32GB)$