A Layered Aggregate Engine
for Analytics Workloads

fdbresearch.github.io relational.ai

Maximilian Schleich
University of Oxford

Dan Olteanu, University of Oxford

OXFORD | MiCHIGAN Mahmoud Abo Khamis, relationalAl
Hung Q. Ngo, relationalAl

XuanLong Nguyen, University of Michigan

relationalAl

Al for the enterprise

University of Washington July, 2019

fdbresearch.github.io
relational.ai

Recall relationalAl Keynote: Analytics over Databases

Current State of Affairs in Analytics Workloads

Customers
Weather
Features
Sales
Stores || al
Inventory
I 0
@
\ Q.
r 4 IS
&
Demographic
grap Items

m Carefully crafted by domain experts m Throws away relational structure

m Comes with relational structure m Can be order-of-magnitude larger

2/11

Turn Analytics Workload into Database Workload!

Database Workload: Batches of Aggregate Queries

Advantages:

1. Use DB Tools for Optimization
2. Decompose Aggregates into Views over Join Tree

» Pushing aggregate computation past joins
» Using different roots and directional views

3. Avoid Materialization of Data Matrix

Challenge:

m Workloads require many aggregate queries

3/11

Aggregates are at the Core of Analytics Workloads

Workload Query Batch # Queries
Linear Regression SUM(Xj* X)) 140
Covariance Matrix ~ SUM(X;) GROUP BY X;

COUNT(*) GROUP BY X, X;
Regression Tree VARIANCE(Y) WHERE X; = ¢; 270
(1 Node)
Mutual Information ~ COUNT(*) GROUP BY X; 106
Chow-Liu Trees COUNT (*) GROUP BY Xj, X;
Data Cubes SUM(M) GROUP BY Xi,..., Xy 40

(# Queries shown for Favorita Kaggle dataset)

4/11

Existing DBMSs are NOT Designed for Query Batches

| Relative Speedup for Our Approach over DBX and MonetDB |

1000 |-

100 |-

cC .R cC R c R c R
Retailer Favorita Yelp TPC-DS

C = Covariance Matrix; R = Regression Tree Node; AWS d2.xlarge (4 vCPUs, 32GB)

5/11

Tools of a Database Researcher

1. Exploit structure in the data

> Algebraic structure: Factorized aggregate computation
» Combinatorial structure: Query complexity measures

2. Sharing computation and data access

> Aggregates decomposed into views over join tree
> Share data access across views

3. Specialization for workload and data
> Generate code specific to the query batch and dataset

> Improve cache locality for hot data

4. Parallelization
» Task and domain parallelism

6/11

LMFAO: Layered Multi Functional Aggregate Optimization

App — LMFAO Logical Optimization Code Optimization

Application Merge Views Group Views

Multi-Output

Optimization
Aggregate

Pushdown

v
Aggregates

Parallelization

v

L

Find Roots Compilation

The Layers of LMFAQO: Logical Optimization hepeation
Qq: SUM (units)
Qo: SUM (item - f(date, color)) GROUP BY store Aggregates
Q3: SUM (units - item) GROUP BY color

II

Join Tree

Find Roots

Sales
Aggregate
ltems Pushdown

Merge Views

/

Transactions Holidays

N
l/

Group Views

Multi-Output
Optimization

Stores

I\
E/

Parallelization

Favorita Kaggle Dataset:
Units sold for different items, stores, date. Compilation

[o0]

The Layers of LMFAQ: Logical Optimization

Qq: SUM (units)
Qo: SUM (item - f(date, color)) GROUP BY store

Q3: SUM (units - item) GROUP BY color

Qi Q

[

Sales

/

(@3]
T

Transactions Holidays

!
B
l/

Find Roots Layer:
For each query, decide its output (root) node.
Choose root which minimizes sizes of views.

Application

Aggregates

II

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

o]

The Layers of LMFAQ: Logical Optimization
Q1: SUM (units)
Qo: SUM (item - f(date, color)) GROUP BY store
Q3: SUM (units - item) GROUP BY color

i Qo

1

Vs 1 @
Sales |&=V., |
« \KVS\") ltems
«

Holidays

/%

Transactions

N

~

Aggregate Pushdown Layer:
Break down each query into directional views over the join tree.

Y
Zoh

Reuse Partial Aggregates & Merge Views with same group-by attributes.

Application

Aggregates

II

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

o]

Application

The Layers of LMFAO: Code Optimization

Q1: SUM (units)
Qo: SUM (item - f(date, color)) GROUP BY store Aaoregates

Q3: SUM (units - item) GROUP BY color

QQ @
T T ~ Group 6
Group 7

m S Aggregate
~ < Pushdown
Group 5 =5 Yins
-) Group 4)
[Transactions } [Holidays J Merge Views

Group Views

II

Join Tree

Find Roots

Group 1 Group 2 Multi-Output

(o] [

Group Views Layer:
1. Construct Dependency Graph Compilation
2. Group Views that are computed over same relation

Parallelization

©

Application

The Layers of LMFAO: Code Optimization

II

Q1: SUM (units)
Qo: SUM (item - f(date, color)) GROUP BY store Aaoregates
Q3: SUM (units - item) GROUP BY color
Join Tree
i1 (]
T T v, . Group 6 Find Roots

Vs
X S~ Aggregate
~ < Pushdown
Group 5 =5 Yins
-) Group 4)
[Transactions } [Holidays J Merge Views

Group Views

Group 1 Group 2 Multi-Output

(o] [

Parallelization

Multi-Output Optimization Layer:
View Group is a computational unit in LMFAQ. Gompilation
All views in one group are computed in one scan over the relation.

©

The Layers of LMFAO: Code Optimization
Q1: SUM (units)
Qo: SUM (item - f(date, color)) GROUP BY store
Q3: SUM (units - item) GROUP BY color

QQ @
T T ~ Group 6
Group 7

I % ltems I
§}\ \Mm
Group 5 =5 Y
. G 4
[Transactions } [Holidays J o

(o] [

Parallelization Layer:
Task parallelism: Evaluate independent groups in parallel
Domain parallelism: Partition the large relation used by each group

Application

Aggregates

II

Join Tree

Find Roots

Aggregate
Pushdown

Merge Views

Group Views

Multi-Output
Optimization

Parallelization

Compilation

©

Application

The Layers of LMFAO: Code Optimization

Q1: SUM (units)
Qo: SUM (item - f(date, color)) GROUP BY store Aggregates

Q3: SUM (units - item) GROUP BY color

QQ @
T T ~ Group 6
Group 7

m S Aggregate
~ < Pushdown
Group 5 =5 Yins
-) Group 4)
[Transactions } [Holidays J Merge Views

Group Views

II

Join Tree

Find Roots

Group 1 Group 2 Multi-Output

(o] [

Parallelization

Compilation Layer:
Generate C++ code to compute each View Group. Gompilation

©

Code Generation for Executing View Group 6 over Sales

item

date

store

Qi: SUM (units)
Traverse Sales as a trie following an order of its join attributes
10/11

Code Generation for Executing View Group 6 over Sales

Vi

v — item
I

Vy — date

Vr — store

Qi: SUM (units)

foreach i € miem(S Miem Vi Mitem V/)

foreach d € 7Tdate(0'item:is Waate Vi Mgate VT)

foreach s € ’Tl'store(o'i(ern:i,date:ds Nstore Tdate=d VT)

Lookup into incoming views, e.g., V4, as early as possible

10/11

Code Generation for Executing View Group 6 over Sales

Vi, fao:?{' S Miem Vi Miem V/
v = item oreach i € miem(S Miem Vi Miem V/)
a1 = V(i)
asz = 0;
Vi — date foreach d € 7yate(Titem=iS Maate Vi Mdate V7)
as = Vi(d);
ae = 0;
Vr — store foreach s € ’Tl'store(o'ilern:i,date:ds Nstore Tdate=d VT)
ag = Vr(d,s); g =0;
foreach U € Tunits Titem=i,date=d,store=s S : @tg += U;
Qe += Qg - Qg;
a3 += i - ag;
Qo += a1 - o3

Qi = ao;

Qi: SUM (units)
Insert code for partial aggregates as early as possible
Reduces number of executed instructions 10/11

Code Generation for Executing View Group 6 over Sales

Vi, ap =0; ,
v = item foreach i € iem (S Miem Vi Miem V)
a1 = V(i)
oo = I;
asz = 0;
Vi — date foreach d € Tgate (Oitem=iS Maate Vi Maate V1)
g = VH(C/);
ae = 0;
Vr — store foreach s € ’Tl'store(o'ilern:i,date:ds Wstore Odate=d VT)
ag = Vr(d,s); g =0;
foreach U € Tunits Titem=i,date=d,store=s S : @tg += U;
Qp += Qg - Qg;
a3 += i - ag;
ao +=ai-az Vs(i) = az - az;

Qi = ao;

Vs_,: SUM (units - item) GROUP BY item

Different outputs share partial aggregates
10/11

Code Generation for Executing View Group 6 over Sales

Vi, ap =0; ,
y — item foreach i € miem(S Miem Vi Mitem V/)
! .
oy = V/(l)
s =1,
az =0;
Vi — date foreach d € 7Tdate(0'item:is Mgate Vi Mgate VT)
as = Vy(d); as=0;
foreach ¢ € TeolorGitem=i Vll Las = f(d7 C) . VI/(I C);
ag =0; a7 =as5- Q2o
Vr — store foreach s € ’Tl'store(o'ilern:i,date:ds Wstore Odate=d VT)
ag = V'r(d7 S); Qg = O; 10 = |O'itemfi.daiefd,storefss‘;
foreach U € Tunits Titem=i,date=d,store=s S : @tg += U;
Qe += Qg - g; Q11 = Q7 - Q8 * Q0;
if Qz(s) then Qa(s) += a1 else Qx(S) = ai;
a3 += i - Qs
ao +=ai-az Vs(i) = az - az;

Q1 = ao;

Q:: SUM (item - f(date, color)) GROUP BY store

Different outputs share partial aggregates
10/11

Experimental Evaluation

‘ Relative Speedup for LMFAO over TensorFlow and MADIib

- ‘ [With at least same accuracy!]

1000

100

L R L R C
Retailer Favorita TPC-DS

L = Linear Regression; R = Regression Tree; C = Classification Tree;
TensorFlow learns only 1 Decision Tree Node. Intel i7-4770 (8 CPUs, 32GB)

11/11

