Data Management for Video Analytics

Brandon Haynes, Maureen Daum, Amrita Mazumdar, Magdalena Balazinska, Luis Ceze, & Alvin Cheung

2

Existing systems treat video data like it's the **20TH CENTURY** Width in pixels

4

Many recent video applications require jointly querying multiple cameras, reasoning about position and orientation, or querying complex metadata.

1

DB Query:

source		Scan("kittens	·)
detection		<pre>source.Map(det</pre>	tect)
result		Union(source,	detection)
result.Sa	ve	("output.mp4")	

13

15

LightDB

- **Key Features:**
 - Data management system for VR & AR video applications Unified data model for panoramic (360°) and light field video
 - Declarative queries with automatic optimization

Key Contributions:

- \sim $^{1}/_{10}$ lines of code Up to 4× performance for real-world workloads Reduced client bandwidth & power requirements

Brandon Haynes bhaynes@cs.washington.edu lightdb.uwdb.io

Scan("LEGOS")
.Map(GRAYSCALE)
.Store("GRAYLEGOS")

Distinct videos performance tested by system

Video System	# Distinct Videos
LightDB (2018)	4
Chameleon (2018)	5
Blazelt (2018)	
NoScope (2017)	7
Focus (2018)	14
DeepLens (2019)	~16
Scanner (2018)	>100 (only 14 joined)

)e
	01
ว	1
2	т

	Dencimarks	lest Data
Video	(Visual Road)	Ad Hoc Synthetic
OLTP	(TPC-H)	Synthetic
OLAP	(SSB, DWEB)	Synthetic
Streaming	(Linear Road, DTDW)	Synthetic
NoSQL	(YCSB)	Synthetic
Graph	(LDBC)	Synthetic
Privacy	(SDV)	Synthetic

Motivation

- We want to enable rich, content-based queries over video data
 Existing systems optimize running object detection over videos
 As a result, they focus on simple queries only
- We want to use this metadata to enable more complex queries

34

Select sequences of frames that contain increasing numbers of cats

Executing Queries Videos are stored in a compressed format Teoding and decoding are expensive operators Percent of Query Time Spent in Encode or Decode Draw boxes over peoplic Select frames with bucksis Select frames with bucksis Get frames with bucksis Get frames with bucksis Get frames with bucksis

	SELECT	frames	FROM	video	WHERE	dog	
						- 	
<u>Dia Pier</u>							
43							

SELECT :	frames FRO	M video WH	HERE dog	
	7			
The Post is Usinger Autor Vicense June 20				
44				

-

SELECT frames FROM video WHERE dog	
45	

SELECT frames FROM video WHERE dog	
46	

SELECT frames FROM video WHERE dog

SELECT pixels FROM video WHERE dog

62

Ongoing Work

- Measure the effectiveness of selection optimization techniques
- Investigate optimization techniques for more compute-heavy queries
- Determine how to effectively layout videos with a lot of metadata Possibly store multiple versions of a video with different layouts

63

64

Conclusion

- Deep learning opens the door to rich queries over video data
- Videos are large and slow to process
- Database techniques can accelerate such queries
- Partitioning
 Indexing
 Incremental physical tuning
- Indexing must be balanced with maintaining reasonable storage sizes