

Snorkel: Accelerating Machine Learning with Training Data Management

Alex Ratner

UW / Stanford

Snorkel Team @ Stanford



Braden Hancock

Ines Chami

Vincent Chen

Clara McCreery

Sen Wu

Chris Ré

And many more!

ML Application =

Data

+

Model

╋

Hardware

from tensorflow.models \
import resnet as model
import resnet2 as model

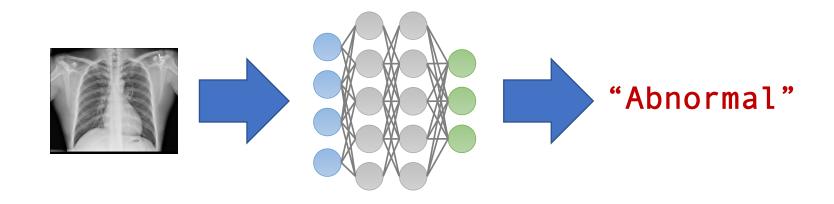
aws ec2 run-instances \
--instance-type p3.2xlarge
--instance-type p3.16xlarge

State-of-the-art models and hardware are commodities Training data is not

Training data is the key ingredient in ML

But it's created and managed in manual, ad hoc ways

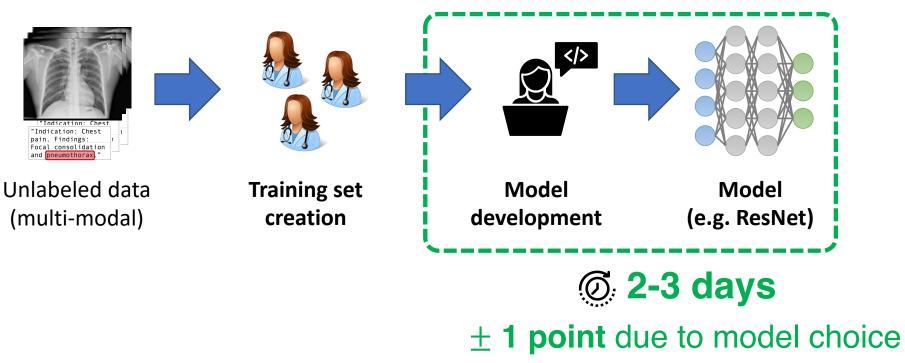
Example: Chest X-Ray Triage



Motivation: Case prioritization for e.g. lowresource hospitals

[Dunnmon et. al., Radiology 2018; Dunnmon & Ratner et. al., 2019; Khandewala et. al., NeurIPS ML4H 2017]

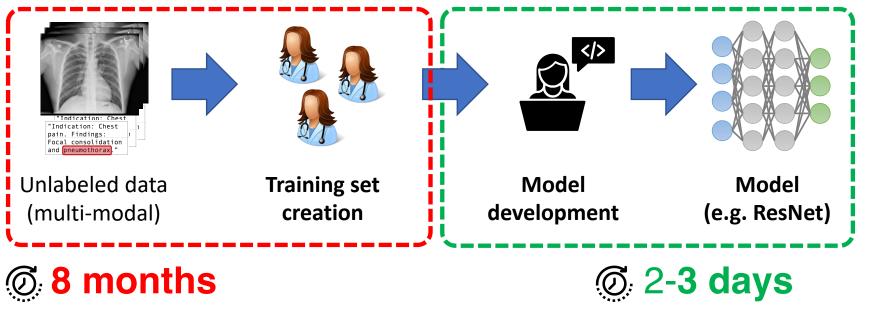
Example: Chest X-Ray Triage



Model dev is often radically easier today!

[Dunnmon et. al., *Radiology* 2018; Dunnmon & **Ratner** et. al., 2019; Khandewala et. al., NeurIPS ML4H 2017]

(All scores: ROC AUC)



 \pm 9 points due to training set size

 \pm 8 points due to training set quality

 \pm **1 point** due to model choice

Training data is often the key differentiator

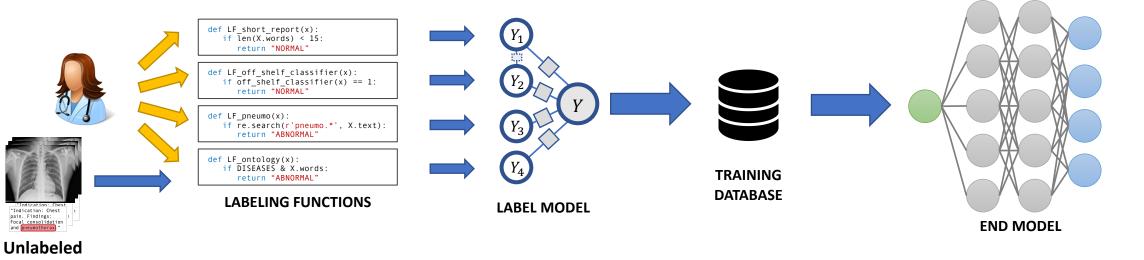
[Dunnmon et. al., Radiology 2018; Dunnmon & Ratner et. al., 2019; Khandewala et. al., NeurIPS ML4H 2017]

(All scores: ROC AUC)

KEY IDEA:

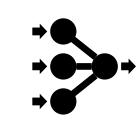
Let users build and manage training datasets programmatically, then clean & integrate it for them

The Snorkel Pipeline



data

Users write *labeling functions* to heuristically label data



Snorkel *cleans and combines* the LF labels

The resulting training database used to train an ML model

snorkel.or

Radiology Example: ~8 hours writing LFs

Example: Fraud Detection Google

Gather Raw Data

Label Training Data

snorkel

Train Model

Goal: Be able to *rapidly adapt* training sets under changing conditions using *programmatic* labeling

[Bach et. al., SIGMOD Industry 2019]

Snorkel: Real-World Deployments

In many cases: From *person-months* of handlabeling to *hours*

Where is weak supervision most helpful?

- Private data (can't ship to crowd workers)
- High-expertise data (need specially-trained domain experts)
- High rate-of-change tasks (constant need to re-label)

High unit annotation cost integrated over time

How well does focusing on training data management work?

The (Super)GLUE Benchmark

General Language Understanding Evaluation

9 language understanding tasks (NL inference, sentiment, etc.)

~1M total examples

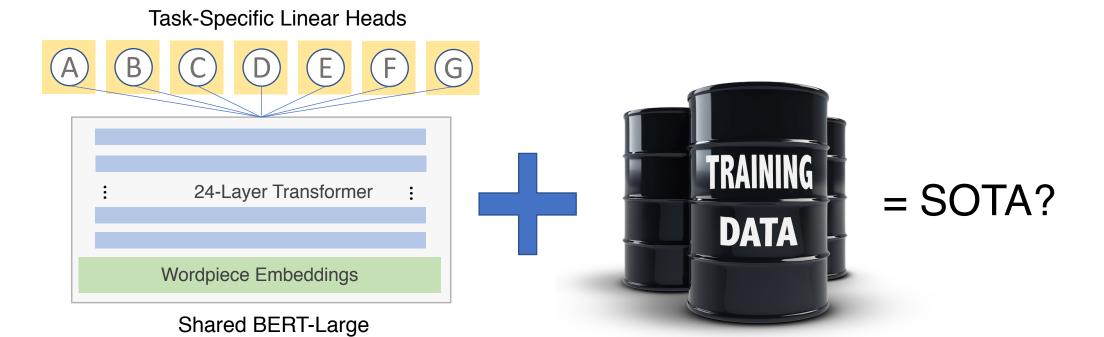
SuperGLUE Example

WiC task: Is the target word being used in the same way in both sentences?

id: x1 Sentence 1: Call my **bank**. Sentence 2: Find picnic spot near the river **bank**. Label: FALSE

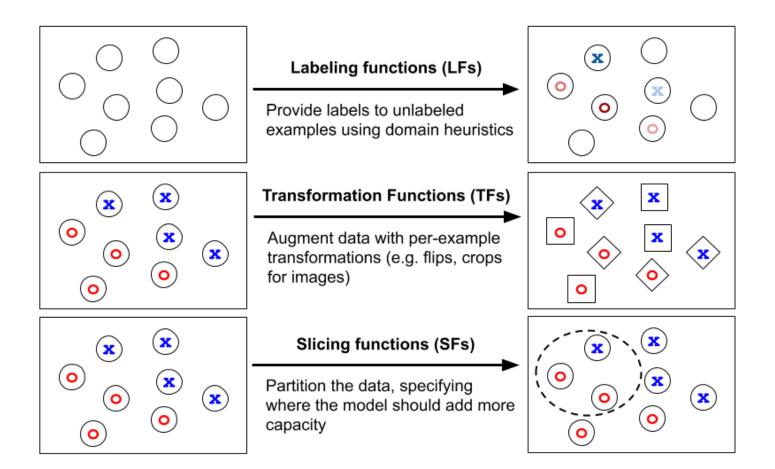
id: x2 Sentence 1: Play **Taylor Swift**. Sentence 2: Text "hi!" to **Taylor Swift**. Label: **TRUE**

Q: SOTA by specifying training data?

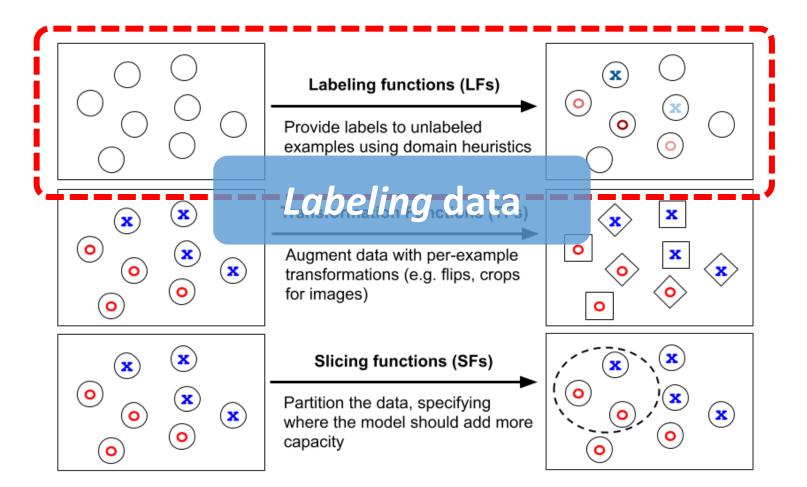


Rank	Name	Model	URL	Score
1	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.6
2	Stanford Hazy Research	Snorkel Metal		74.5
3	SuperGLUE Baselines	BERT++		70.5
		BERT		68.0
		CBOW		48.6
		Most Frequent Class		46.9
		Outside Best		-

Three Key Training Data Operations



Three Key Training Data Operations



SuperGLUE Labeling Function (LF)

def lf_matching_trigrams(x): if trigram(x.sentences[0].target) == trigram(x.sentences[1].target): return TRUE else: return ABSTAIN

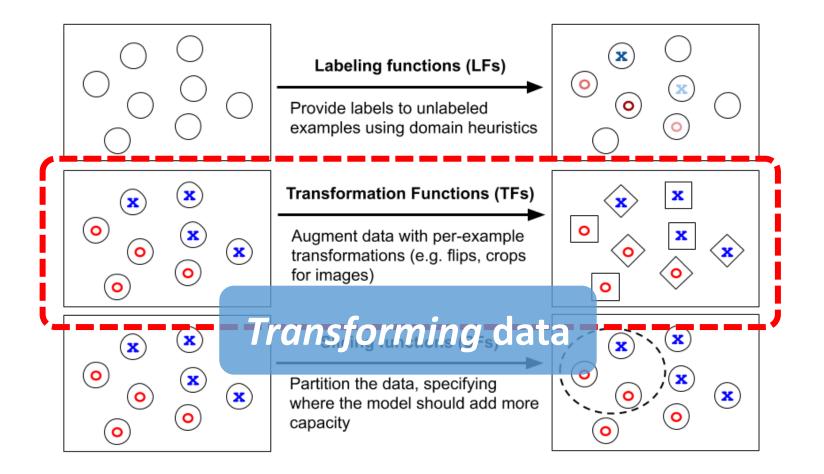
id: x1

Sentence 0: Can <u>I invite you</u> for dinner on Sunday night? Sentence 1: The <u>organizers invite submissions</u> of papers. Label: FALSE

id: x2 Sentence 0: He felt <u>a **stream** of</u> air . Sentence 1: The hose ejected <u>a **stream** of</u> water . Label: TRUE lf_matching_trigrams(x1) == ABSTAIN

```
lf_matching_trigrams(x2) == TRUE
```

Three Key Training Data Operations



SuperGLUE Transformation Function (TF)

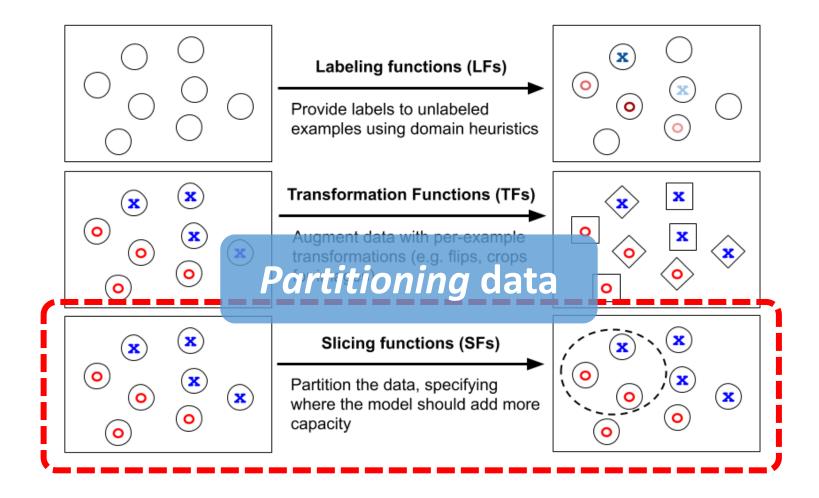
def tf_days_of_the_week(x): yield x for DAY in DAYS_OF_WEEK: yield replace_with_synonym(x, word=DAY, synonyms=DAYS_OF_WEEK)

id: x1

Sentence 1: Can I **invite** you for dinner on **Sunday** night? Sentence 2: The organizers **invite** submissions of papers.

Sentence 1: Can I **invite** you for dinner on Sunday night? Sentence 1: Can I **invite** you for dinner on Monday night? Sentence 1: Can I **invite** you for dinner on Tuesday night? Sentence 1: Can I **invite** you for dinner on Wednesday night? Sentence 1: Can I **invite** you for dinner on Thursday night? Sentence 1: Can I **invite** you for dinner on Friday night? Sentence 1: Can I **invite** you for dinner on Saturday night?

Three Key Training Data Operations



SuperGLUE Slicing Function (SF)

def sf_target_is_noun(x): if x.sentences[0].target.pos == NOUN and x.sentences[1].target.pos == NOUN return NOUN_SLICE else: return ABSTAIN

id: x1

Sentence 0: Can I **invite** you for dinner on Sunday night? Sentence 1: The organizers **invite** submissions of papers.

id: x2

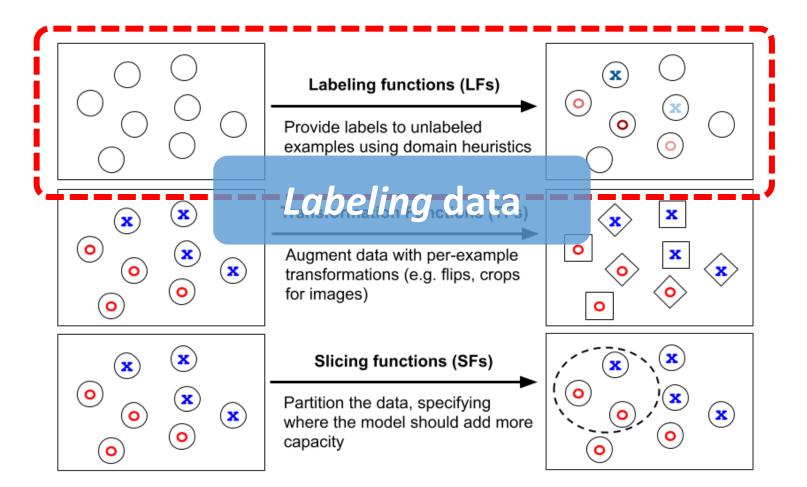
Sentence 0: He felt a **stream** of air . Sentence 1: The hose ejected a **stream** of water . sf_target_is_noun(x1) == ABSTAIN

sf_target_is_noun(x2) == NOUN_SLICE

Key Idea: Let users spend their time building and modifying the training data

snorkel.org

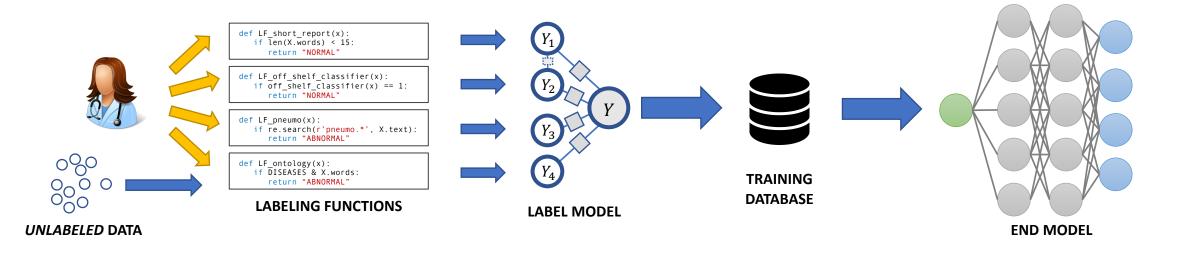
Three Key Training Data Operations



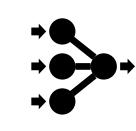
Problem: Hand-labeling is slow, expensive, & static

Idea: Enable users to label training data programmatically

The Snorkel Pipeline



Users write *labeling functions* to heuristically label data



Snorkel *cleans and combines* the LF labels

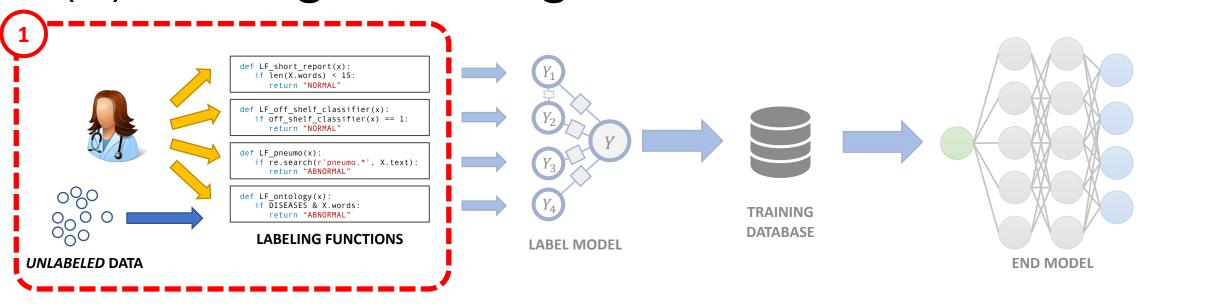
The resulting training database used to train an ML model

snorkel.or

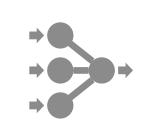
Note: No hand-labeled training data!

snorkel

(1) Writing Labeling Functions



Users write *labeling functions* to heuristically label data



Snorkel *cleans and combines* the LF labels

tr u

The resulting training database used to train an ML model

SuperGLUE Labeling Function (LF)

def lf_matching_trigrams(x): if trigram(x.sentences[0].target) == trigram(x.sentences[1].target): return TRUE else: return ABSTAIN

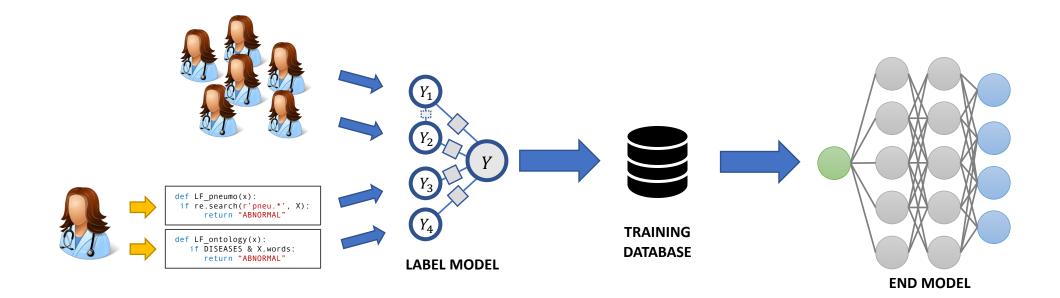
id: x1

Sentence 0: Can <u>I invite you</u> for dinner on Sunday night? Sentence 1: The <u>organizers invite submissions</u> of papers. Label: FALSE

id: x2 Sentence 0: He felt <u>a **stream** of</u> air . Sentence 1: The hose ejected <u>a **stream** of</u> water . Label: TRUE lf_matching_trigrams(x1) == ABSTAIN

```
lf_matching_trigrams(x2) == TRUE
```


Hybrid Crowd + Programmatic Labeling



Snorkel as a management layer for human (e.g. internal crowd) + programmatic labeling

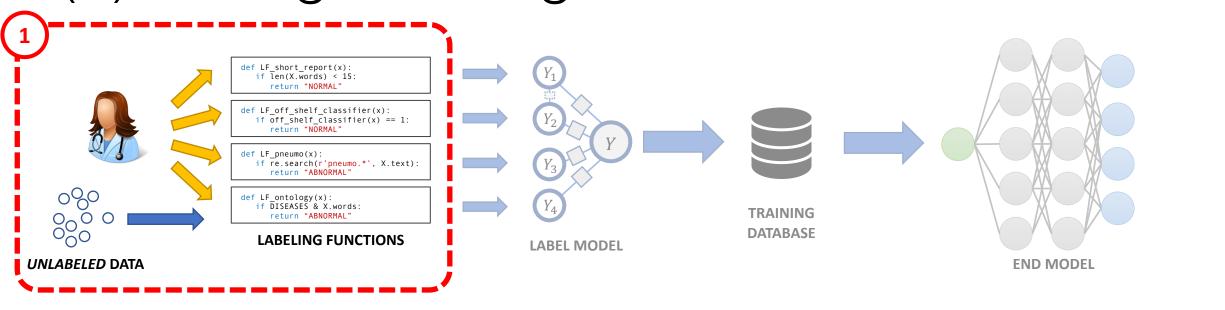
Result: Supervision as Code

	<pre>def LF_ontology(x): if DISEASES & X.words: return "ABNORMAL"</pre>
	<pre>def LF_pneumo(x): if re.search(r'pneumo.*', X.text): return "ABNORMAL"</pre>
	<pre>def LF_off_shelf_classifier(x): if off_shelf_classifier(x) == 1: return "NORMAL"</pre>
	<pre>def LF_short_report(x): if len(X.words) < 15: return "NORMAL"</pre>

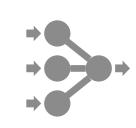
But, very messy supervision...

snorkel

(1) Writing Labeling Functions

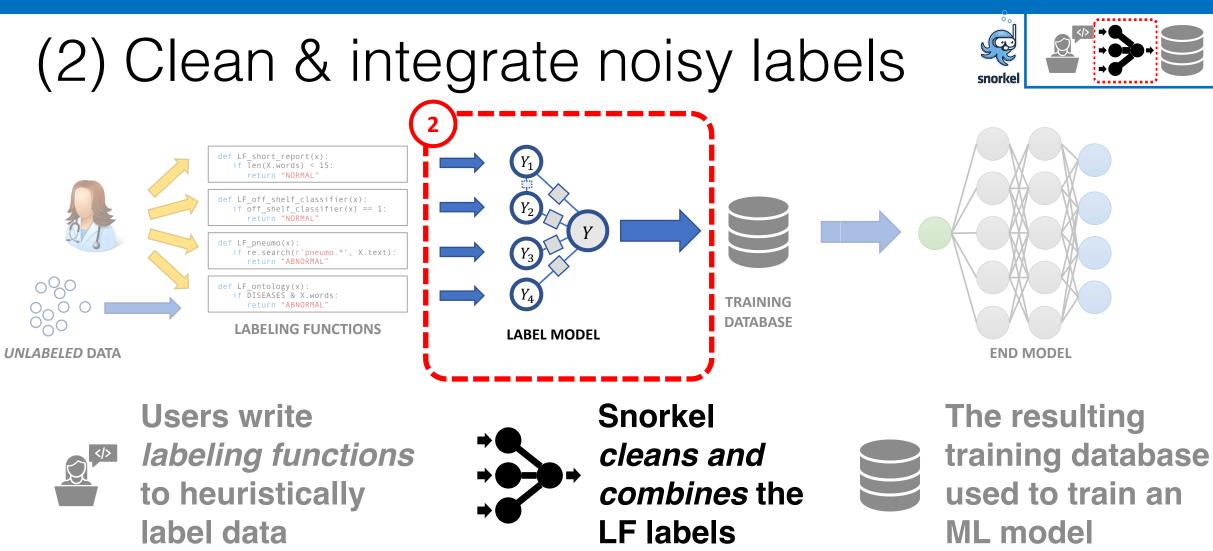


Users write *labeling functions* to heuristically label data



Snorkel *cleans and combines* the LF labels

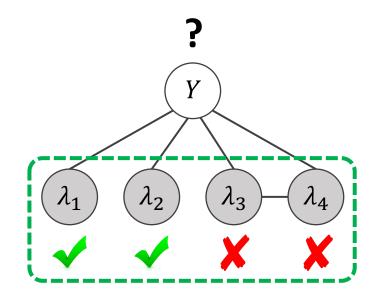
The resulting training database used to train an ML model

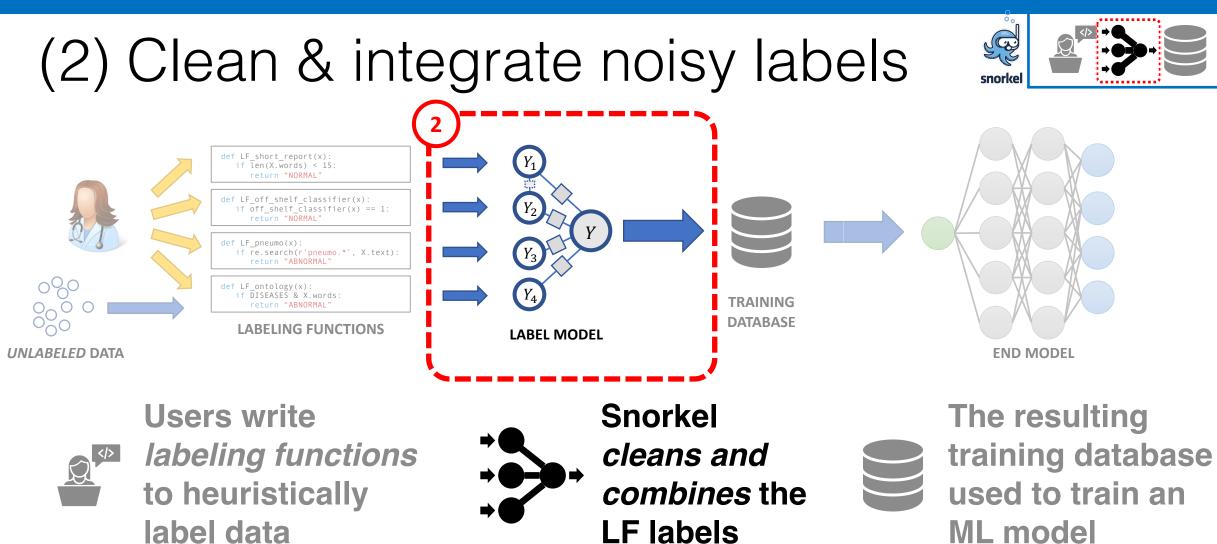


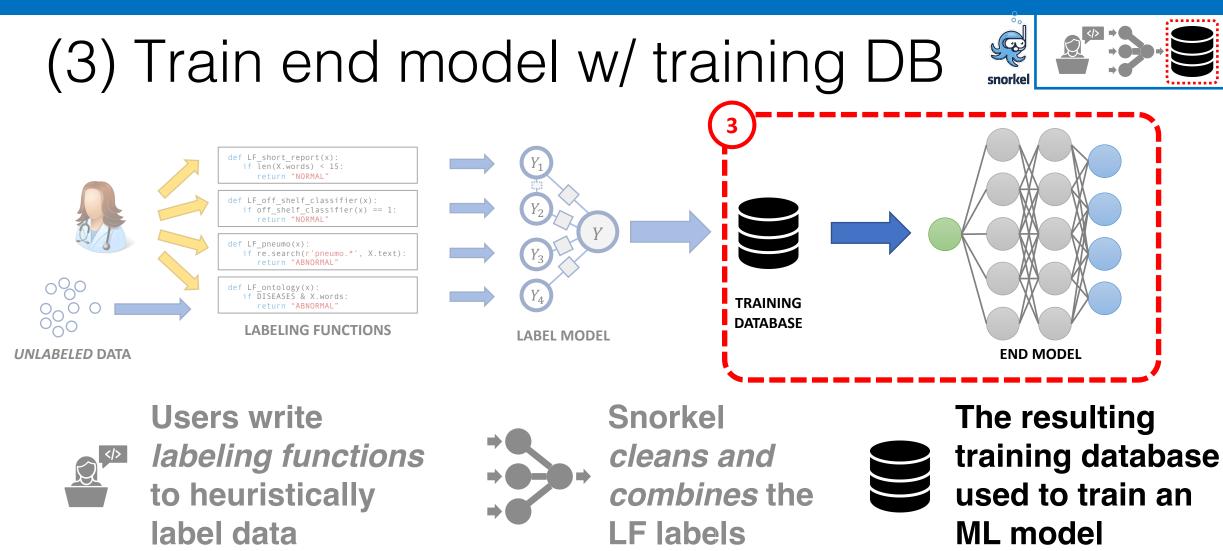
How can we do this without ground-truth labels?

Key idea: Learn from the *agreements & disagreements* between the LFs

[Ratner et. al., AAAI '19] [Ratner et. al., NeurIPS '16]

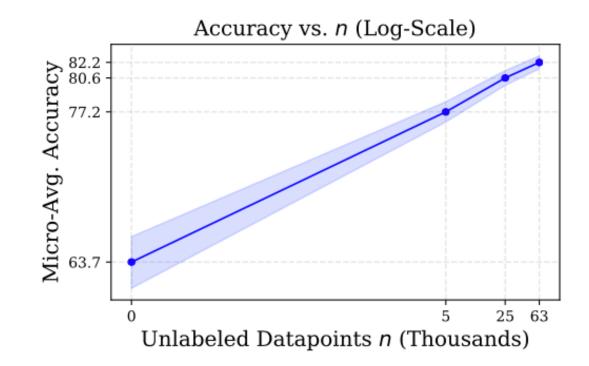






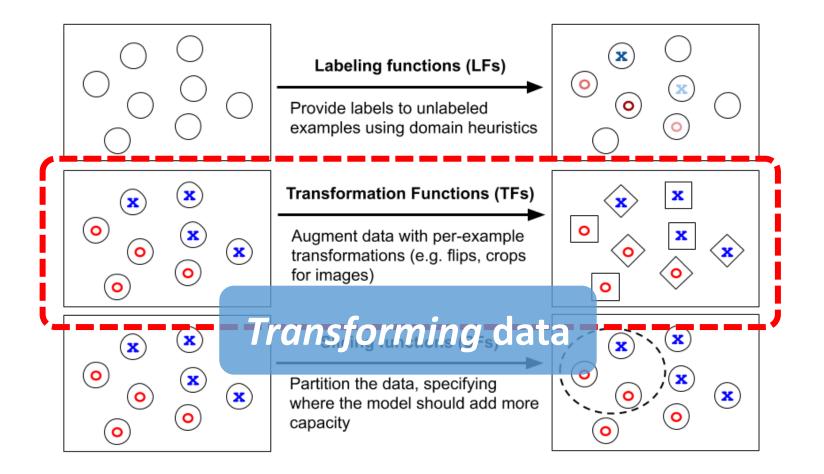
Key question: How do we communicate the lineage (quality) of the training labels?

Highlight: Scaling with unlabeled data

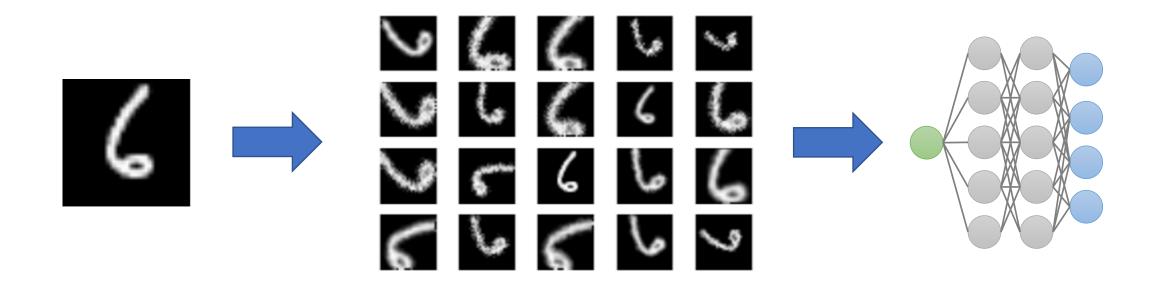


Takeaway: Add more *unlabeled* data---without changing the LFs---and get better end performance!

Three Key Training Data Operations



One Critical Tool: Data Augmentation



Ex: 13.4 pt. avg. accuracy gain from data augmentation across top ten CIFAR-100 models

SuperGLUE Transformation Function (TF)

def tf_days_of_the_week(x): yield x for DAY in DAYS_OF_WEEK: yield replace_with_synonym(x, word=DAY, synonyms=DAYS_OF_WEEK)

id: x1

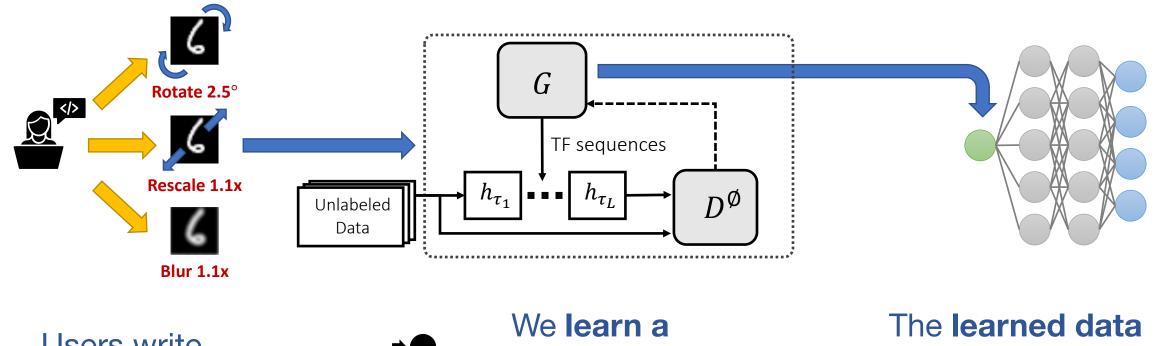
Sentence 1: Can I **invite** you for dinner on **Sunday** night? Sentence 2: The organizers **invite** submissions of papers.

Sentence 1: Can I **invite** you for dinner on Sunday night? Sentence 1: Can I **invite** you for dinner on Monday night? Sentence 1: Can I **invite** you for dinner on Tuesday night? Sentence 1: Can I **invite** you for dinner on Wednesday night? Sentence 1: Can I **invite** you for dinner on Thursday night? Sentence 1: Can I **invite** you for dinner on Friday night? Sentence 1: Can I **invite** you for dinner on Saturday night?

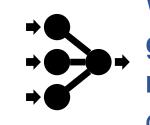
Problem: Data augmentation is *critical*, but hard to hand-tune

Idea: Users provide *transformations* which we automatically tune and compose

Automatic Data Augmentation from User-**Specified Invariances**

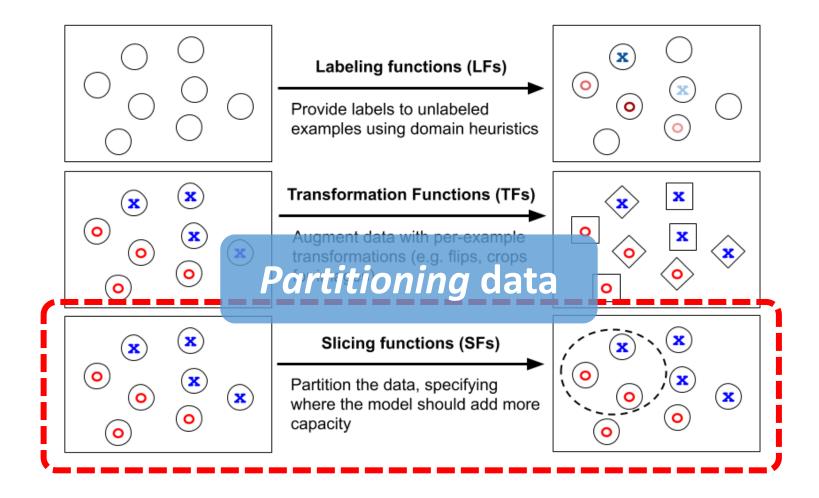


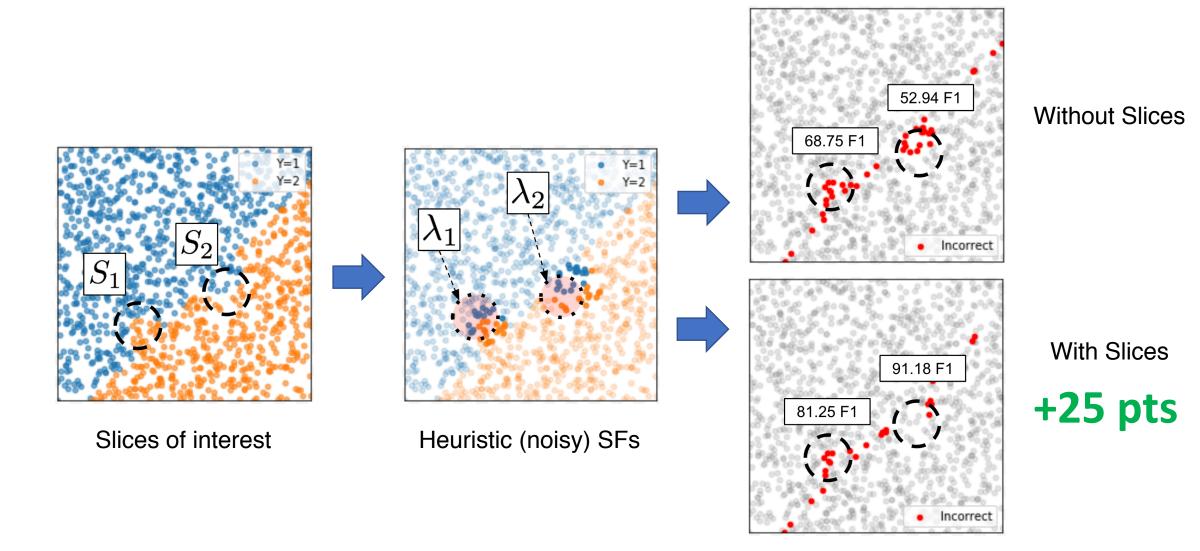
Users write transformation functions (TFs)



generative model to tune & compose the TFs augmentation policy used for training the end model 44

Three Key Training Data Operations

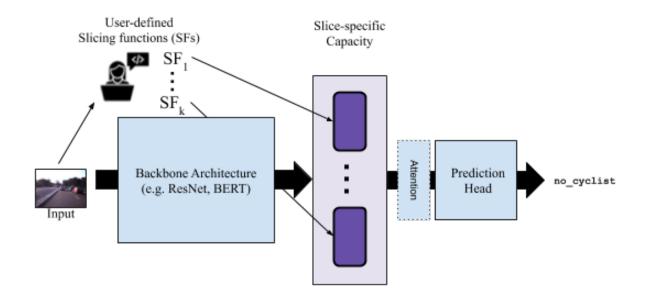




Slicing Functions (SFs) specify where the model should add more capacity

Slicing Functions (SFs)

- The model learns to predict which slices each data point belongs to.
- An attention mechanism learns how to combine the representations learned for each slice to make its final prediction.



SuperGLUE Slicing Function (SF)

def sf_target_is_noun(x): if x.sentences[0].target.pos == NOUN and x.sentences[1].target.pos == NOUN return NOUN_SLICE else: return ABSTAIN

id: x1

Sentence 0: Can I **invite** you for dinner on Sunday night? Sentence 1: The organizers **invite** submissions of papers.

id: x2

Sentence 0: He felt a **stream** of air . Sentence 1: The hose ejected a **stream** of water . sf_target_is_noun(x1) == ABSTAIN

sf_target_is_noun(x2) == NOUN_SLICE

Conclusion

- Key idea: Build MTL models by programmatically building & modifying the training dataset
- Three core operations to manipulate training data:
 - Labeling (LFs)
 - Transforming (TFs)
 - Partitioning / "slicing" (SFs)
- Full code using Snorkel posted soon (by 6/24)!

Snorkel.Stanford.edu