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Background

Social networks play a fundamental role as a medium for the
spread of information, ideas & influence.

https://phys.org/news/2015-05-rumor-detection-software-ids-disputed-twitter.html
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Background: Influence Maximization (2003)

Consider a social network as a graph with edges representing
relationships between users and suppose we have estimates for the
probabilities that individuals influence one another.

u vpu,v

Goal: Adoption of a product by a large fraction of the users in the
network by initially targeting a few “influential” members.
Idea: Influential users trigger a cascade of influence leading to
many individuals trying the product.
Question: How can we choose the seed set of influential users?
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Background: Misinformation Prevention (2011)

I While the ease of information propagation in social networks
can be very beneficial, it can also have disruptive effects.

I In order for social networks to serve as a reliable platform for
disseminating critical information, it is necessary to have tools
to limit the effect of misinformation.

I Consider two campaigns propagating through a network: one
“good” and one “bad”.

I Question: What is our objective function?
I e.g. “save” as many nodes as possible, limit the lifespan of the

“bad” campaign, or maximize the adoption of the “good”
campaign.

I Question: How can we choose a seed set that minimizes the
number of users who end adopting the “bad” campaign?
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Independent Cascade Model (ICM)

I Seminal work of Kempe, Kleinberg, & Tardos introduce a
general model and obtain first provable approximation
guarantees.

I Their model considers the diffusion of information through the
network in a series of rounds.

http://home.cse.ust.hk/~qyang/621U/
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Independent Cascade Model (ICM)
I Formally, assume there is a subset, A0, referred to as the seed

set in which the nodes are considered “active”.
I In each round, the set of active nodes has a chance to

activate neighbouring nodes according to the influence
probabilities on the edges.

I Process terminates when no new activations occur from round
t to t + 1.

http://home.cse.ust.hk/~qyang/621U/

8 / 19

http://home.cse.ust.hk/~qyang/621U/


Influence Maximization Problem (IM)

I Influence of a seed set A0, denoted σ(A0), is the expected
number of active nodes at the end of the diffusion process.

I The Influence Maximization Problem asks, given a budget k ,
to find a k-node set of maximum influence (NP-hard).

I Main result of Kempe, Kleinberg, & Tardos is that IM can be
approximated to within a factor of (1− 1/e − ε) via greedy
approach.

I Limitation: in each round of greedy we must estimate the
marginal increase in the spread of influence for every node not
already in A0.

I large number of costly simulations required is a significant
computational barrier when considering massive online social
networks
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Eventual Influence Limitation Problem (EIL)

I Consider two campaigns: a “bad” campaign C and a
“limiting” campaign L with seed sets AC and AL respectively.

I Let IF (AC ) denote the influence set of C in the absence of L,
i.e the set of nodes that would adopt campaign C if there
were no limiting campaign.

I Define the function π(AL) to be the size of the subset of
IF (AC ) that campaign L prevents from adopting campaign C .

I The Eventual Limitation Problem asks, for a budget k , to
select a k-node set for the limiting campaign L such that the
expectation of π(AL) is maximized.

I Budak, Agrawal, & Abbadi are able to show that the greedy
approach yields the same performance guarantees as it does
for IM.
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IM Improvements: Borgs et al

Borgs et al introduced a novel way of viewing the IM problem.
Their key insight was instead of asking “Who can I influence?”
Asking “Who could have influenced me?”

In other words: instead of asking, for a node v , which set of nodes
can v influence? (i.e. reachability from v)

Asking which nodes could have influenced v? (reverse reachability)

This is a fundamental shift in how to view the Influence
Maximization Problem
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IM Improvements: Borgs et al

“Who could have influenced me?”

Define the Reverse Reachable (RR) set for a node v such that for
each node u in the RR set, there is a directed path from u to v in
g ∼ G .

If a node u appears in an RR set generated for a node v , then u
should have a chance to activate v if we run an influence
propagation process on G using {u} as the seed set.
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IM Improvements: Borgs et al

Idea: If a node u appears in a large number of random RR sets,
then it should have a high probability to activate many nodes
under the IC model; in that case, u’s expected influence should
be large.

Based on this intuition, Borgs’ algorithm runs in two steps:

1. Generate a certain number of random RR sets from G .

2. Consider the maximum coverage problem of selecting k nodes
to cover the maximum number of RR sets generated. Use the
standard approach to derive a (1− 1/e)-approximate solution.
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IM Improvements: Tang et al

Greedy (Kempe et al) requires O(kmn) time complexity.

Borgs et al propose a threshold-based approach: they keep
generating RR sets until the total number of nodes and edges
examined during the generation process reaches a pre-defined
threshold. This results in a O(k(m + n) log2 n/ε3) time algorithm.

I Near optimal since any algorithm that provides same
approximation guarantee and succeeds with at least constant
probability must run in Ω(m + n) time.

Tang et al improve this to O(k(m + n) log n/ε2) by generating a
fixed number of RR sets.

I An improvement by a factor of log n/ε.
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Present Work

Our present work seeks to incorporate the new techniques for the
IM problem to the misinformation setting of Budak et al.
Importantly, this requires adapting the concept of an RR set to
the multi-campaign setting.

Who could have saved me?

Unlike the IM setting, we must account for the complicated
interactions that occur during the diffusion of the two campaigns
through the graph. Simple shortest path computations do no
suffice.
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Present Work

Who could have saved me?

We must account for the fact that some nodes will be blocked by
the diffusion of campaign C .

vLu

w

vC

We see that |SP(vL,w)| = 4 and |SP(vC ,w)| = 5, but w cannot
be saved in the resulting cascade since at timestamp 1 the node u
will adopt campaign C .
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Present Work

Results:

I We design a sophisticated BFS-based algorithm to
efficiently compute RR sets in the multi-campaign setting.

I We show that the proof techniques of Tang et al can be
successfully applied to analyze our algorithm for the EIL
problem in the multi-campaign setting.

I We use this to construct an approach to solve the EIL problem
with a much stronger asymptotic runtime than Budak et al.

I Our preliminary experimental results show that our new
approach outperforms Budak’s greedy approach by a factor
of over 100.
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