
Bringing SQL to the Masses
with Program Synthesis

Chenglong Wang, Alvin Cheung, Ras Bodik
University of Washington

1

End-User

2

Select rows with
maximum value for

each group.

Find rows
containing duplicate

values.

Calculate the
running total for a

table.

Select x.id, x.customer, x.total
From PURCHASES x
Join (Select p.customer,
 Max(total)
 From PURCHASES p
 Group By p.customer) y
On y.customer = x.customer
 And y.max_total = x.total

Select a.ord, a.total,
 Sum(b.total)
From t As a Join t As b
Where b.ord <= a.ord
Group By a.ord,a.total
Order By a.ord

Select *
From Users a
Where Exists
 (Select *
 From Users b
 Where (a.name = b.name
 Or a.email = b.email)
 And a.ID <> b.id)

SQL

Observations

A lot of common tasks require using complex SQL constructs.

greatest-n-per-group

running-total

duplicates

Aggregation

Subquery

Exists/In-clauses

3

Many tasks can be concisely expressed with input-output examples.Idea: summarize our observation on StackOverflow

Transition: these problems can be concisely expressed with
examples, can we build some system that allows users to
ask question using examples only?

4

Programming by Example System

Synthesize

T1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2

oid val
1 30
1 10
1 10
2 50
2 10

Out

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T1
Join (Select id, Max(val)
 From T2
 Where val < 50
 Group By oid) T3
On T3.oid = T1.uid

Join two tables and return
the rows containing the

maximum val below 50 for
each group.

Idea: introduce what we want to do: build a PBE system.

Transition: let’s first see what is the traditional algorithm to
build such system.

Synthesis Algorithm: Value-directed Search

5

2

2
4

6

8

add(2, 4)

add(4, 4)

add(2, 2)

mul(2, 2)

add(2, add(2, 2)) = 6
add(2, mul(2, 2)) = 6

Input: 2, 2, Output: 6, Operators: add, mul FlashFill

SuperOptimizer

add(2, add(2, 2))

mul(2, add(2, 2))
add(2, mul(2, 2))

mul(2, mul(2,2))

T1

id date uid

1 12/25 1

2 11/21 3

4 12/24 2

T2

oid val

1 30

1 10

1 10

2 50

2 10

Select *
From T3
Join T5
On id = oid

q4
Select *
From T3
Join T5
On uid = oid

Select * From T1
Where id > 1

Select * From T1
Where id > uid

Select *
From T2

q1
Select *
From T1
Where True

q2
Select *
From T2
Where val < 50

……

Select *
From T2
Where val = 50

enumerate

……
T4

oid MaxVal

1 30
1 10
1 10
2 10

id date uid
2 11/21 3
4 12/24 2

oid MaxVal

2 50

T3

id date uid

1 12/25 1

2 11/21 3

4 12/24 2

evaluate

q3
Select oid,Max(val)
From T4
Group By oid

q4
Select *
From T3
Join T4
On uid = oid

Select id, Max(uid)
From T3
Group By id

Select *
From T3 Join T2
On True

Select oid,Max(val)
From T4
Group By oid
Having maxVal < 50

……

……

Enumerative Search on SQL

Tout

oid date uid oid MaxVal

1 12/25 1 1 30

4 12/24 2 2 10

6

Input: T1, T2, Output: Tout, Operators: Select, Join, Aggr
Select *
From T1
Join (Select id, Max(val) As MaxVal
 From T2
 Where val < 50
 Group By oid) T3
On T3.oid = T1.uid

T5

oid MaxVal

1 30

2 10

……

……

id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 1 1 30
4 12/24 2 1 30
1 12/25 1 1 10
2 11/21 1 1 10
4 12/24 2 1 10
1 12/25 1 2 50
2 11/21 1 2 50
4 12/24 2 2 50
1 12/25 1 2 10
2 11/21 1 2 10
4 12/24 2 2 10

Challenge 1:
Large number of queries

Challenge 2:
Large tables

T6

oid date uid oid MaxVal

2 12/25 1 1 30

4 12/24 2 2 10

……

=
oid date uid oid MaxVal

1 12/25 1 1 30

4 12/24 2 2 10

Insight: Decomposition

7

Search in the space
of SQL queries

T1

id date uid

1 12/25 1

2 11/21 3

4 12/24 2

T2

oid val

1 30

1 10

1 10

2 50

2 10

Tout

oid date uid oid MaxVal

2 12/25 1 1 30

4 12/24 2 2 10

Select *
From T1
Join (Select id, Max(val)
 From T2
 Where val < 50
 Group By oid) T3
On T3.oid = T1.uid

Insight: Decomposition

8

T1

id date uid

1 12/25 1

2 11/21 3

4 12/24 2

T2

oid val

1 30

1 10

1 10

2 50

2 10

Tout

oid date uid oid MaxVal

1 12/25 1 1 30

4 12/24 2 2 10

Select *
From (Select *
 From T1
 Where True)
Join (Select id, Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Search abstract
SQL queries

Instantiate
abstract queries

Select *
From (Select *
 From T1
 Where □)
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Abstract Queries

Pro: Smaller space of programs.
Challenge: which ones to search for?

Search with Abstract Queries

Select *
From T1
Where □

Select *
From T2
Where □

… …

Select oid, MAX(val)
From T4
Group By oid
Having □

Select id,Max(uid)
From T3
Group By id
Having □

Select *
From T3
Join T5
On □T2

oid uid
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T3
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T4
oid uid
1 30
1 10
1 10
2 50
2 10

T5
oid MaxVal
1 30
1 10
2 50
2 10

… …

Tout

oid date uid oid MaxVal

1 12/25 1 1 30

4 12/24 2 2 10

9

Select *
From (Select *
 From T1
 Where □)
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Goal:

Input: T1, T2, Output: Tout, Operators: abstract query operators

?

?

How to evaluate
abstract queries?

T6

id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 3 1 30
4 12/24 2 1 30
1 12/25 1 1 10
2 11/21 3 1 10
4 12/24 2 1 10
1 12/25 1 2 50
2 11/21 3 2 50
4 12/24 2 2 50
1 12/25 1 2 10
2 11/21 3 2 10
4 12/24 2 2 10

oid date uid oid MaxVal

1 12/25 1 1 30

4 12/24 2 2 10

⊆

Instantiate Abstract Queries

10

T1

id date uid

1 12/25 1

2 11/21 3

4 12/24 2

T2

oid val

1 30

1 10

1 10

2 50

2 10

Tout

oid date uid oid MaxVal

1 12/25 1 1 30

4 12/24 2 2 10

Select *
From (Select *
 From T1
 Where True)
Join (Select id, Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Search abstract
SQL queries

Instantiate
abstract queries

Select *
From (Select *
 From T1
 Where □)
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Abstract Queries

Instantiate Abstract Queries

Select *
From (Select *
 From T1
 Where □)
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

True,
False,

uid < id,
…

val < 50,
val == 50,
val > id,

True,
…

True,
False,

MaxVal < 50,
…

T1.uid = T3.oid,
T1.id = T3.oid,…

True + val < 50 + False + T1.uid = T3.oid

False + val < 50 + False + T1.uid = T3.oid

True + val == 50 + False + T1.uid = T3.oid

True + val == 50 + MaxVal < 50 + T1.uid = T3.oid

……

11

A intuitive solution that does
no scale.

Transition: can we use
properties of the abstract
query to optimize this?

Instantiate Abstract Queries

12

Select *
From T1
Where □

Select *
From T2
Where □

Select oid, MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □T2

oid uid
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T6

id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 3 1 30
4 12/24 2 1 30
1 12/25 1 1 10
2 11/21 3 1 10
4 12/24 2 1 10
1 12/25 1 2 50
2 11/21 3 2 50
4 12/24 2 2 50
1 12/25 1 2 10
2 11/21 3 2 10
4 12/24 2 2 10

oid date uid oid MaxVal

1 12/25 1 1 30

4 12/24 2 2 10

⊆

T3
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T4
oid uid
1 30
1 10
1 10
2 50
2 10

True,
False,

uid < id,
…

val < 50,
val == 50,
val > id,

True,
…

True,
False,

MaxVal < 50,
…

T1.uid = T3.oid,
T1.id = T3.oid,…

1 12/25 1 1 30

4 12/24 2 2 10

[100000000001]
Select *
From (Select *
 From T1
 Where □)
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Generating Solutions

Select *
From (Select *
 From T1
 Where □)
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

True

val < 50

True
T1.uid = T3.oid

id <> uid

val <> 50

True

T1.uid = T3.oid And T1.id <> T2.id

…

…

…

…

Select *
From T1
Join (Select id, Max(val)
From T2
 Where val < 50
 Group By oid) T3
On T3.oid = T1.uid

Select *
From (Select * From T1 Where id <> uid)
Join (Select id, Max(val)
 From T2
 Where val <> 50
 Group By oid) T3
On T1.uid = T3.oid And T1.id <> T2.id

……

13

Ranking & Interaction

• Heuristically rank candidate queries.

• Criteria: complexity, naturalness etc.

• When the result is not desirable:

• Provide new input-output examples.

14

15

Evaluation

Scythe: 143

Enum: 92

Benchmark: 193

 34: more features
 15: run out of time
 1: fail to disambiguate

34X

Demo

16

Conclusion

• Goal: Helping end users to program SQL with input-output examples.

• Solution: An efficient two-phase synthesis algorithm.

• Evaluation: Able to solve 143/193 problems on StackOverflow.

17

