
"After careful consideration of all 437 charts, graphs, and metrics, I've decided to throw up my hands, hit the liquor store, and get snockered. Who's with me?!"

A Probabilistic Approach to Data Summarization

Laurel Orr, Magdalena Balazinska, and Dan Suciu DB Research Day 2015

Original Database

 (All Flights in US)

What are the most popular flights?

Summary

FAST
APPROXIMATE

Flights from Los Angeles to San Diego

Existing Summarization Techniques

Sampling

Aggregation

Online, Error Bounded (BlinkDB)

		AVG	MIN	MAX	COUNT(*)

Flights (origin, destination, fl_time, ...) ~ 2.6 GB Sampling

Aggregation

```
SELECT origin, COUNT(*)
FROM Flights
GROUP BY origin;
```

Full Query Time: 20 sec

```
SELECT *
FROM Flights
WHERE origin='SEATTLE, WA'
LIMIT 10;
```

Full Query Time: 0.4 sec

```
SELECT origin, COUNT(*)
FROM Flights
WHERE dest = 'LAUREL, MS'
AND fl_time < 120
GROUP BY origin;
```

Full Query Time: 30 sec

IDEA

Find a compact, probabilistic representation of our database

Flights with high probability of existence

$$
=\text { Popular }
$$

By knowing the probability of relations and tuples, we can answer queries probabilistically

The Simplest Summary

Assume there is some concrete relation $R(A, B)$, and you summarized R by its active domain and cardinality.

Given this summary alone, what are the possible relations R could have been (possible worlds of R)?

Possible World Semantics

active domain

A
a_{1}
a_{2}
b_{1}
b_{2}

$$
\mathrm{n}=2
$$

slotted instance

	A	B
id1		
id2		

A
a_{1}
a_{1}

A
a_{1}
a_{2}

A
a_{2}
a_{1}

A
a_{2}
a_{2}

X

$=16$ Possible Instances

$$
\operatorname{Pr}(I)=\frac{1}{16}
$$

set of all possible instances
(stand for Possible WorlDs)

Possible World Semantics

active domain

A
a_{1}
a_{2}
b_{1}
b_{2}

$$
\mathrm{n}=2
$$

slotted instance		
A B id1 id2		

A
a_{1}
a_{1}

A
a_{1}
a_{2}

A
a_{2}
a_{1}

A
a_{2}
a_{2}

X

\mathbf{B}	
b_{1}	
$\mathrm{~b}_{1}$	

B
b_{1}
$\mathrm{~b}_{2}$

B
b_{2}
$\mathrm{~b}_{1}$

B
b_{2}
b_{2}

$=16$ Possible Instances

$$
\underset{\text { Tuple Probability }}{\operatorname{Pr}}\left(\left(a_{1}, b_{1}\right)\right)=\sum_{\substack{I \in P W D \\\left(a_{1}, b_{1}\right) \in I}} \frac{1}{16}=\frac{7}{16}
$$

Adding Constraints

\mathbf{A}
a_{1}
a_{2}
:---
b_{1}
b_{2}

$$
\begin{aligned}
& \left|\sigma_{R \cdot A=a 1}(R)\right|=70 \\
& \left|\sigma_{R \cdot A=a 2}(R)\right|=30
\end{aligned}
$$

probabilistic instance
active domain

$$
\mathrm{n}=100
$$

$$
\left|\sigma_{R . A=a 1 \wedge R . B=b 1}(R)\right|=40
$$

$\sum_{I \in P W D}\left|\sigma_{I . A=a_{1}}(I)\right| \operatorname{Pr}(I)=70$
$\sum_{I \in P W D}\left|\sigma_{I . A=a_{2}}(I)\right| \operatorname{Pr}(I)=30$
How can we solve for $\operatorname{Pr}(1)$?
$\sum_{I \in P W D}\left|\sigma_{I . A=a_{1} \wedge I . B=b_{1}}(I)\right| \operatorname{Pr}(I)=40$

Principle of Maximum Entropy

The Principle of Maximum Entropy states that subject to prior data, the probability distribution which best represents the state of knowledge is the one that has the largest entropy

In other words, you want to maximize

More Formally

$R\left(A_{1}, \ldots, A_{m}\right),|R|=n$
$D_{i}=$ distinct domain of A_{i},
Tup $=\left\{D_{1} \times D_{2} \times \ldots \times D_{m}\right\}$,
$\Phi=$ set of equality predicates ϕ

$$
\operatorname{Pr}(I)=P^{-n} \prod_{\phi \in \Phi} \alpha_{\phi}^{\left|\sigma_{\phi(R)}\right|}
$$

$$
\begin{aligned}
& \qquad=\sum_{t \in T u p} \alpha_{\phi} \\
& \text { all possible tuples in } \\
& \text { our active domain }
\end{aligned}
$$

To include constraints on each ϕ

$$
s_{R}(\phi)=\left|\sigma_{\phi}(R)\right|=E\left[\left|\sigma_{\phi(I)}\right|\right]
$$

We can show

$$
s_{R}(\phi)=\frac{n \alpha_{\phi} P_{\alpha_{\phi}}-}{P}-\begin{gathered}
\text { derivative of } P \text { with } \\
\text { respect to } \alpha_{\phi}
\end{gathered}
$$

To solve, maximize the potential function by gradient descent

$$
\Psi=\sum_{\phi \in \Phi} \ln \left(\alpha_{\phi}\right) s_{R}(\phi)-\ln \left(P^{n}\right)
$$

Query Transformation

Aggregates: take expected value

```
SELECT origin, COUNT(*)
FROM Flights
GROUP BY origin;
```


For each origin o

$$
E\left[\left|\sigma_{\phi}(I)\right|\right]=\frac{n \alpha_{\phi} P_{\alpha_{\phi}}}{P}
$$

An equation in terms of the α^{\prime} s we have calculated and stored

```
SELECT origin, E[|\sigmaorigin(Flights)|]
FROM Flights, alpha_origin,...
WHERE origin=alphas.origin
GROUP BY origin;
```


Optimizations

1. Factorize P (solve 1D predicates independently)
2. Add relevant $2+D$ predicates (ex: $\left.\left[A=a 1^{\wedge} B=b 1\right]\right)$
3. Remove tuples that don't exist

$$
P *=P-\sum_{t \in(T u p-R)} \prod_{\phi \in \Phi \mid \phi(t)=\text { true }} \alpha_{\phi}
$$

4. Change Basis (for correlations) new attribute $A B=f(A, B)$
(ex: $A B=A-B)$

Experiment with TPC-H

SELECT order_date, ship_date, COUNT(*) FROM orders JOIN lineitem GROUP BY order_date, ship_date;

$$
\text { Error }=\frac{|E s t-T r u e|}{E s t+T r u e}
$$

100 2D Change Basisav Max Error

Change Basis: order_date - ship_date

Conclusion

- Introduced new way to summarize and approximately query massive datasets
- Complements sampling and approximate aggregation
- Allows fine grained control over which attributes and values get summarized
- Encouraging preliminary results
- Still need to better address scalability and expand query language
- Need to understand how best to choose statistics

